Convolutional Neural Networks
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Artificial Neural Networks

* Feedforward, fully-connected neural networks
— Large modeling capacity
— Require large amounts of data
— Work fairly well for handwritten digits
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Natural images? ...not so much.
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Natural Images

* Much more detail
— Intricate spatial relationships

 More variety within a class of examples
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Natural Images

* Much more detail
— Intricate spatial relationships

 More variety within a class of examples
— Natural variations
— Color
— Viewing angle
— Lighting
— Size
— Position



Can we build a better network?



Take inspiration from neuroscience
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Biological Vision
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Biological Vision

 Hubel & Wiesel (1950s)

RECEPTIVE FIELDS OF SINGLE NEURONES IN
THE CAT’'S STRIATE CORTEX

By D. H. HUBEL* anp T. N. WIESEL*

From the Welmer Institute, The Johns Hopkins Hospital and
Unaversity, Baltimore, Maryland, U.S.A.

(Recerved 22 April 1959)
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Biological Vision

 Hubel & Wiesel (1950s)

— Record from neurons in V1
— Present moving gratings

Neural response (spikes/sec)

T T T T
-40 -20 0 20 40

Stimulus orientation (deg)




Biological Vision
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Biological Vision

* Simple and complex cells
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Biological Vision

* Higher visual areas



Biological Vision

* Higher visual areas
— Encode complex stimuli



Biological Vision

* Higher visual areas

— Encode complex stimuli
* Professor Doris Tsao, Caltech




Biological Vision
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Biological Vision

* Hierarchical representation
* Map of visual space at lower levels



Biological Vision

* Hierarchical representation
* Map of visual space at lower levels

* Highly connected at upper levels of the
hierarchy



How do we turn this into a model?



Convolution & Pooling



Convolutional Operation




Convolutional Operation

(4 X 0)
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source pixel. The source pixel is then replaced 0x0
with a weighted sum of itself and nearby pixels. : 0% 1;
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Pooling Operation

max pool with 2x2 filters

and stride 2
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LeNet

C3: 1. maps 16@10x10
INPUT C1: feature maps S4: 1. maps 16@5x5

6@28x28
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| Full connection Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

LeCun, 1989
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Al Winter

* Convolutional neural networks are great, but...
— They are hard to train
— They take a long time to train
— We don’t have enough data to train them
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GPU

* Graphics Processing Unit
— Rendering images is computationally intensive
— Parallel processing architecture to handle this task

* Can also handle matrix multiplication
operations
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Big Data

* Cameras
— Digital cameras, smartphones

* |Internet
— Anyone can upload a picture

— Crowdsourcing

* ImageNet

IMAGE




ImageNet Large Scale Visual
Recognition Challenge
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ImageNet Large Scale Visual
Recognition Challenge
* Object recognition task

— 1.2 million images
— 1,000 classes of objects
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ILSVRC 2012

Krizhevsky, et al. use a deep convolutional
network

— Nearly halve the best error rate of the previous
year

— Trained using GPUs and a few other tricks
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Rectified Linear Units (ReLUs)

* Researchers had primarily been using sigmoid
non-linearities
— Vanishing gradient, saturation

* Instead, use RelLU ‘[ —Retu

— Works much better! =
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Dropout

* Unreliable connections between layers
— Randomly have connections ‘drop out’

* Acts as a regularizer

— Forces the network to learn general features
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Features

YYNA™ EEER maw
A bl | | B L

* Top Image Patches

Ll B

B .. BERS
— s

!
\
[ |
b
| §

1
!
!

i
C
=
|
4
a

REE B
[N,




gail ol o TN
..O u ﬁ"i&‘ AV ﬂ

] ’, .

1) | :_ : | | ,. - N
ﬁ ';;__JO'E:‘H B | x4 /B /-uul@“EEI B
- _—— .
- - e
v

7 VLY 7/
AR YL R

TN
L

';”;nuu‘ ‘;Il?'l..J h

‘ = | _—

TN S \j;:i <
Ml <= 3 =ELEFY RC

l 99 l/}le,z’.“ e
.l]I % Y ——

TII7P. 5 EEE -, N
mmy alﬂ%lllu _Lk













| ---&" hg’w'\"a‘o[
5:!!‘ L A\mmw '
- g 7







Z .&/A!ﬂ ..

\. v .|-







Top 5 Error Rate

IMAGENET

26%

2010

2011

2012

6%

60

2013

2%

110

2014

# of entries using GPUs
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2014

* GoogleNet
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* GooglLeNet

2014
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* GooglLeNet

1x1 convolutions

2014

Filter
concatenation

N
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5x5 convolutions
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1x1 convolutions

4

3x3 max pooling

Previous layer




* GooglLeNet
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* GooglLeNet

2014

DepthConcat
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2014

* GoogleNet
— 7% top-5 error
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2015

* Microsoft
— 5% top-5 accuracy
— Surpassed human level performance
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models
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Issues

e Adversarial examples

* Lacking a theoretical understanding of these
models

* Learning is dependent on class labels.
Unsupervised deep learning is less developed.



Software Packages

Caffe - https://github.com/BVLC/caffe

Torch - https://github.com/torch/torch7

Theano - https://github.com/Theano/Theano
Neon - https://github.com/NervanaSystems/neon

TensorFlow - https://github.com/tensorflow/tensorflow




Resources

LeNet: Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Handwritten
digit recognition with a back-propagation network. Advances in Neural Information Processing Systems. 1990.

ImageNet: Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal
contribution) ImageNet Large Scale Visual Recognition Challenge. arXiv:1409.0575, 2014.

AlexNet: Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep
convolutional neural networks." Advances in neural information processing systems. 2012.

Network Visualization: Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional
networks." Computer Vision—ECCV 2014. Springer International Publishing, 2014. 818-833.

GoogleNet: Szegedy, Christian, et al. "Going deeper with convolutions." arXiv preprint arXiv:1409.4842 (2014).

Microsoft Network: He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification." arXiv preprint arXiv:1502.01852 (2015).

Adversarial Examples: Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:
1312.6199 (2013).



