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what is general machine intelligence?
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the ability to perform a comprehensive set of ‘intelligent’ tasks 

• identifying high level concepts from environmental sensory 
signals (e.g. objects, words, etc.) 

• planning and interacting intelligently in the environment (e.g. 
walking, driving, talking, etc.) 

• remembering recent and past events 

• reasoning about high level concepts (logic, math, etc.) 

we want to apply the computational scalability of machines to 
the natural world



what will it take to develop general machine intelligence?
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Biologically Inspired 
Machine Intelligence

Independently Inspired 
Machine Intelligence
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Marr’s Three Levels
• Computational

• what is the goal of the computation? 
• Algorithmic

• what is the strategy to achieve it? 
• Implementational

• what is the design of such a system?

David Marr, 19826



Marr’s Three Levels
• Computational

• object recognition 
• Algorithmic

• visual filters, pooling 
• Implementational

• biological neurons

David Marr, 19827



Marr’s Three Levels
• Computational

• Algorithmic

• Implementational
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Biological Inspiration
• try to use biological intelligence as a proof of 

concept model for machine intelligence 
• similar algorithmic interpretation, different 

implementation (hardware/software vs. wetware) 
• can make use of evolution’s insights 
• machine intelligence may be too difficult to 

develop independently, or may end up leading 
to same result but through more effort
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specialized units: neurons specialized structures: brain stem 
nuclei, cortex, sensory organs, etc. 
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Biological Neurons

at least hundreds of distinct neuron types 

roughly 100 billion neurons in the human brain 
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Biological Structures

the central nervous system contains many morphologically and 
functionally specialized structures
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Biological Intelligence
Biological intelligence is not random. A 
brain is more than just a collection of 
neurons. 

Intelligent biological systems start with 
a set of genetic biological priors on 
their basic units and their overall 
structure. 

Evolution has found these priors to be 
helpful for survival. Too vital to be 
learned each time. 

Biological intelligence is a result of 
evolution (nature) and individual 
learning (nurture).
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Evolutionary Learning
Evolution is really an optimization (i.e. learning) algorithm. 
Evolution is the ‘outer loop’ for learning in intelligent biological 
systems. 

Evolutionary intelligence is not directly learnable by individuals: 
You cannot learn to have a hippocampus in the same way 
that you cannot learn to have wings.
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Evolutionary Learning
evolution 

individual
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Biological Intelligence
Evolutionary priors, which allow for pattern recognition, memory, 
planning, reasoning, communication, etc. are useful for survival.  

Apparently also useful for discovering the laws of nature. 

Evolution has found a computing architecture that 
generalizes beyond tasks directly relevant for survival.
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Overview of Biological 
Intelligence
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Brain Stem
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Medulla, Pons, Midbrain 

Regulates basic body functions: heart rate, breathing, eating, sleeping, 
etc.



Sensory Inputs
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Vision Audition Olfaction Gustation Somatosensation

+ Proprioception, Thermoception, Nociception, Mechanoreception,  
Equilibrioception, Chemoreception, …



Limbic System
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Collection of areas between brain stem and cerebrum: thalamus, 
hypothalamus, hippocampus, amygdala. 

Involved in processing motivation, emotion, learning, senses, memory.



Cerebellum
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Highly folded cortical sheet, dense with neurons. 

Involved in posture and movement.



Cerebrum
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Highly folded cortical sheet. Consists of four lobes in each hemisphere. 

Involved in sensory processing, memory, language, movement, 
planning, reasoning.



Overview of 
(Biologically Inspired) 

Machine Intelligence
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Artificial Neurons
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Feedforward Networks

25



Convolutional Networks
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Recurrent Networks
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Backpropagation
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Biological Plausibility 
& 

Correspondence
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Neurons
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Similarities
inputs/weights (dendrites), bias/non-linearity (threshold voltage), output 
(axons) 

Differences
simplistic dendrites, static (non-temporal), deterministic (?), continuous 
output, etc.

artificial neuron biological neuron



Sensory Processing
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Similarities
repeated basic unit, hierarchical 

Differences
typically no feedback, different basic units, different scales, different 
inputs/outputs, etc.

artificial neural network biological neural network



Learning
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Similarities
optimization of synaptic strengths 

Differences
…

backpropagation spike timing dependent plasticity (STDP)

Bi & Poo, 1998



Is Backprop Biologically 
Plausible?
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- backpropagation is purely linear, whereas neurons use linear and non-
linear operations 

- if feedback paths are used, they would need precise knowledge of the 
derivatives of the non-linearities at their operating point 

- feedback paths would need to be symmetric 

- neurons communicate through binary, not continuous, signals 

- computation would need to be precisely clocked 

- not clear where outputs come from 

- not clear how to backpropagate through time
Towards Biologically Plausible Deep Learning, Bengio 2015



Sensory Cortex
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Cortical Sheet

cell bodies form a sheet 2 to 3 mm thick, highly folded 

roughly 100,000 neurons per sq. mm
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van den Broeke 2016



Cortical Layers
Layer 1: primarily axons and dendrites 

Layer 2/3: dense lateral connections in 
patchy patterns, sparse activations, 
sends outputs to higher cortical areas 

Layer 4: receives input from thalamus or 
lower cortical area, outputs to layer 3 

Layer 5: sends outputs to spinal cord and 
thalamus 

Layer 6: connected to other cortical 
areas, forms loops with thalamus 

36
Ramon y Cajal 1899

van den Broeke 2016



Cortical Columns

neurons within a vertical column have closely related functions, 
considered to be the basic computational circuit/unit of cortex 
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Cortical Hierarchy

classical view of hierarchical processing in sensory cortex 

hierarchical processing allows the compositional structure of natural stimuli to be broken down 

lateral inhibition at each processing stage

38
Hochstein & Ahissar, 2002



Cortical Feedback

feedback connections outnumber feedforward connections 

typically thought to send prediction or attention signals 

cortex is generative, can imagine low level details from high level cue
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Top down influences on visual processing, Gilbert & Li 2013



Latent Variable 
Models

40



Latent Variable Models

model the observed data as resulting from a set of latent variables  
—> generative model of the data p(x|z) 

place some prior activation or structural constraint p(z) on the latent 
variables in order to learn some underlying structure in the data 

train by maximizing the marginal likelihood of the data p(x)
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Latent Variables

Observed Variables

hidden structure/causes of the environment

environmental stimuli

z

x

p(z)

p(x|z)



Latent Variable Models

causal inference: infer latent variables from observed, p(z|x) 

evidential inference: infer observed variables from latent variables, 
p(x|z) 

inter-causal inference: infer latent variables from other latent 
variables, p(z|z)
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Latent Variables

Observed Variables

hidden structure/causes of the environment

environmental stimuli

z

x

p(z)

p(x|z)

Koller & Friedman, 2009
Murphy, 2012



Latent Variable Models

inferring the latent variables p(z|x) directly is often intractable in 
practice since it involves marginalizing over all possible latent states 

we need to resort to approximate inference: 
• sampling-based methods 
• variational methods

43

Latent Variables

Observed Variables

hidden structure/causes of the environment

environmental stimuli

z

x

p(z)

p(x|z)



Variational Inference

variational methods learn a separate model q(z|x) that approximates p(z|x) 

amortized inference: share parameters in approximate inference model 
across all data points 

VAE: use neural networks, learn q(z|x) and p(x|z) jointly by maximizing 
lower bound on marginal likelihood, also called variational free energy
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z

x

p(z)

x’

q(z|x) p(x|z)

Kingma & Welling, 2013
Rezende et al., 2014



Normalizing Flows

use a set of invertible transformations to sharpen the variational 
approximation to the posterior distribution 

often, this normalizes or whitens the latent variables 

z’ is a whitened version of z
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z

x

p(z’)
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q(z|x) p(x|z’)

z’

Rezende & Mohamed 2015
Kingma et al. 2016



Hierarchical Latent Variable 
Models

factorize z over multiple levels, learn multiple levels of hidden 
structure 

reconstruct observed variables as well as lower latent variables 

TargetProp: use local learning rules at each level of latent variables
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x x’

Towards Biological Plausible Deep Learning, Bengio et al. 2015
Salimans 2016



Predictive Coding

send predictions down, send errors up 

try to minimize errors/surprise: mismatch between prediction and 
observation 
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x x’

Rao & Ballard 1999
Friston 2007



Connections to Sensory 
Cortex

Hierarchical architecture 

Probabilistic, Stochastic (?) 

Bottom up and top down information 

Local learning rules 

Normalization at each processing step 

Unsupervised/semi-supervised 

Can enforce sparsity constraint, use convolutional connectivity
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Different Interpretation of 
Sensory Cortex

Sensory cortex is not an input-output mapping 

Not simply extracting patterns 

Making predictions about the underlying causes of the sensory 
inputs 

Check against input 

Learn from the input rather than the output
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Summary, 
Closing Points, 

Future Directions
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Intelligent Systems
to construct an intelligent system, we need 

• priors on the system’s parameters 
• data to learn the system’s parameters 

without appropriate priors, any system would likely 
be too complicated to learn or would require too 
much data
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Biological Inspiration
• we can try to mimic evolution’s priors on computational 

architecture, units, etc. (Marr’s algorithmic level) to 
develop machine intelligence 

• hopefully shorten the evolutionary learning process 
significantly, fewer experiments 

• will likely develop a better understanding of biological 
intelligence 

• need interdisciplinary insights
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Biological Inspiration
• much of deep learning has focused on trying to 

mimic sensory processing in cortex 

• need work on  
• motor planning and control (motor cortex, 

cerebellum) 
• low shot, novelty learning (hippocampus) 
• sensorimotor integration 
• etc.
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Human Civilization
• we have developed better communication skills 

• language 
• writing 
• art 
• recordings 
• internet 

• as a result, we can capture and transmit 
knowledge more easily between each other and 
to the next generation
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Human Civilization
• human civilization has become an additional 

optimization loop: 

evolution 
human civilization 

individual
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Human Civilization
• we have also extended our abilities through 

external memory and computational resources 
• written language 
• other media 
• computers 
• internet 

• human knowledge is far too vast to fit in any 
single person’s brain
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Machine Intelligence
• machine intelligence is starting as specialized applications 

• speech recognition 
• self-driving cars 

• as we develop a better understanding, we will build more 
general machines 
• true personal assistants 
• machine scientists, agents 

• general machine intelligence will be able to directly integrate 
with external computational and memory resources 

• will likely eventually be a distributed network of systems, 
working, communicating, and learning together 
• direct communication, faster copying/transfer of information

57



58



Marr, David. "Vision: A computational investigation into the human representation and processing of visual information." (1982). 

Bengio, Yoshua, et al. "Towards biologically plausible deep learning." arXiv preprint arXiv:1502.04156 (2015). 

Bi, Guo-qiang, and Mu-ming Poo. "Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, 
synaptic strength, and postsynaptic cell type." The Journal of neuroscience 18.24 (1998): 10464-10472. 

van den Broeke, Gerben. "What auto-encoders could learn from brains." (2016). 

Marblestone, Adam H., Greg Wayne, and Konrad P. Kording. "Toward an integration of deep learning and neuroscience." Frontiers 
in Computational Neuroscience 10 (2016). 

Hochstein, Shaul, and Merav Ahissar. "View from the top: Hierarchies and reverse hierarchies in the visual system." Neuron 36.5 
(2002): 791-804. 

Gilbert, Charles D., and Wu Li. "Top-down influences on visual processing." Nature Reviews Neuroscience 14.5 (2013): 350-363. 

Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012. 

Koller, Daphne, and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009. 

Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013). 

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra. "Stochastic backpropagation and approximate inference in deep 
generative models." arXiv preprint arXiv:1401.4082 (2014). 

Rezende, Danilo Jimenez, and Shakir Mohamed. "Variational inference with normalizing flows." arXiv preprint arXiv:1505.05770 
(2015). 

Kingma, Diederik P., Tim Salimans, and Max Welling. "Improving variational inference with inverse autoregressive flow." arXiv 
preprint arXiv:1606.04934 (2016). 

Friston, Karl J., and Klaas E. Stephan. "Free-energy and the brain." Synthese 159.3 (2007): 417-458. 

Rao, Rajesh PN, and Dana H. Ballard. "Predictive coding in the visual cortex: a functional interpretation of some extra-classical 
receptive-field effects." Nature neuroscience 2.1 (1999): 79-87.

59

References


