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biologically inspired computation



biological intelligence

• flexible 
• capable of detecting/

executing/reasoning about 
high level patterns 

• limited by evolutionary 
constraints 

• slow, imperfect



goal: 
build machines that have the 
same capabilities as biological 
intelligence  

use inspiration from biological 
intelligence to motivate 
engineering and design of these 
machines



inputs: pre-synaptic signals

function: non-linear depolarization

output: spike

output = function (inputs)



output = function (inputs)
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multi-layer perceptron
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28 x 28 x 1 = 784 inputs

784 512 512 10

Network Architecture:

(784 + 1) x 512 
= 401,920 weights

(512 + 1) x 512 
= 262,656 weights

(512 + 1) x 10 
= 5,130 weights

(h x w x channels)

401,920 + 262,656 + 5,130 = 669,706 weights

~ 1,000x as many weights as inputs



375

600

375 x 600 x 3 = 675,000 inputs

• large space of high level concepts 
• more variety of patterns 
• complex spatial relationships

Additional Difficulties

Natural Images

675,000,000 weights?



How do animals recognize visual stimuli? 

Hubel & Wiesel - 1950s 

• recorded responses of neurons in primary visual cortex (V1) to 
simple stimuli 

• found selectivity to bars of specific orientation

Biological Inspiration

Hubel	&	Wiesel,	1959



How do animals recognize visual stimuli? 

Simple and Complex Cells

Biological Inspiration

simple cells combine lower 
level features (on/off ganglion 
responses) within a receptive 

field to select for more complex 
features

complex cells combine 
responses from simple cells 

within a larger receptive field to 
develop translation invariance 



How do animals recognize visual stimuli? 

Hierarchical Processing of Visual Features

Biological Inspiration

Kandel	et	al.,	2012



How do animals recognize visual stimuli? 

Highly Inter-Connected High Level Visual Areas

Biological Inspiration

Friewald	et	al.,	2009	&	2010

face patches



Natural images can be decomposed into a relatively small set of 
low level patterns, i.e. filters. 

Objects are translation invariant. It’s not the absolute positions of 
patterns that matters, but rather the relative positions. 

Engineering Motivation

Exploit the redundancy within the input by sharing 
weights within the network.



In a multi-layer perceptron, each layer contains a set of units. 
Each unit operates over all units in the previous layer through a 
vector of weights. 

In a convolutional neural network, each convolutional layer 
contains a set of feature maps. Each feature map operates over 
all feature maps in the previous layer through a tensor of weights, 
a filter.

Convolution

vector of weights

tensor of weights

output unitinput units

input feature maps output feature map

output unit



A feature map is a matrix of units. We calculate a feature map by 
convolving the corresponding filter with the previous layer’s 
feature maps. This is just a tensor dot product of the filter with the 
previous feature maps.

Convolution

input feature maps output feature map



The stride of a convolution is the step size by which you 
convolve each filter with the input feature maps. This can be used 
to decrease the spatial size of output feature maps. 

The padding of a convolution is the amount of space to place 
around the boundaries of the input feature maps. This can be 
used to maintain the spatial size of output feature maps.

Convolution

stride

padding



Convolutional layers allow us to be selective to features within the 
input image. We also want translation invariance with respect to 
these features.  

We can sub-sample the maximum values of the feature maps to 
retain only the (invariant) high-level details. This is called max 
pooling.

Pooling

2 6
1 2 6

input feature map output feature map



Pooling also contains a stride and padding, which are analogous 
to convolution. A larger stride decreases the feature map’s spatial 
size more. Padding preserves the edges.

Pooling

stride

padding



Other
(Biologically Inspired)

Tricks



Sigmoid non-linearities lead to vanishing gradients during 
backpropagation in deep networks. 

Instead, use rectified linear units (ReLU). This non-linearity does 
not suffer from vanishing gradients, allowing for deeper networks. 
However, it also has the negative effect of linearizing the network.

Rectified Linear Units (ReLU)

input

output
ReLU

ReLU (x) = max(x, 0)

Nair	et	al.,	2010



With large networks, it is easier to overfit to the training data. 
Units may start to co-adapt during training, in which they depend 
heavily on each other. 

Remedy this by using dropout, randomly turning off units. This 
prevents the units from co-adapting, effectively creating an 
ensemble of networks within one network.

Dropout

Srivastava	et	al.,	2014



It often helps to normalize the units to a fixed mean and 
variance, capturing only the relative differences in the activations 
rather than their absolute values. This also has the effect of 
preventing co-variate shift, allowing for faster training. 

There are multiple ways to normalize the units. The most popular 
method is batch normalization.

Normalization

batch mean

batch variance

normalize

scale and shift

batch

batch norm output

Ioffe	et	al.,	2015



It is difficult to train very deep networks: it becomes more difficult 
to avoid local minima. For this reason, we can introduce residual 
connections, in which the activations are added to their input at 
each layer. 

Each layer learns a residual function, allowing the network to 
maintain important features at deeper layers.

Residual Connections

He	et	al.,	2015,	2016



Multi-Layer Perceptrons
vs.

Convolutional Neural Networks

DEMO



Objects are high-level visual patterns. We want to train 
computers to recognize these patterns: pedestrian detection, 
visual search, surveillance, etc.

Object Classification



To build a successful object classifier, 
we need 

data
• ImageNet —> over 14 million images 

belonging to over 20,000 object 
categories 

compute hardware
• GPUs allow parallelized 

computation, resulting in significant 
speed up over CPU 

models
• deep convolutional neural networks

Object Classification



A subset of 1.2 million images from ImageNet is used for the 
ImageNet Large Scale Visual Recognition Challenge. This 
competition requires entrants to classify objects from 1,000 
different categories. 

The human top-5 error rate (correct label is not in top 5 guesses) 
is about 5%. An estimated 3% of the data is mislabeled.

ILSVRC



Object Classification

DEMO



Deep Network Architectures



Introduced convolutional neural networks 

Modeled after Fukushima’s Neocognitron 

Achieved state-of-the-art performance on MNIST 

LeNet - 1989

LeCun	et	al.,	1989



AlexNet - 2012

7 layers 

Introduced training on GPUs 

ILSVRC top-5 error rate: 15.3 % 

Krizhevsky	et	al.,	2012



VGG - 2014

19 Layers 

Many layers of convolutions with 3 x 3 filters 

ILSVRC top-5 error rate: 7.4 % 

Simonyan	et	al.,	2014



GoogLeNet - 2014

22 Layers 

Introduced inception blocks, auxiliary classifiers 

ILSVRC top-5 error rate: 6.7 % 

Szegedy	et	al.,	2014



ResNet - 2015

He	et	al.,	2014

34 Layers 

Introduced residual connections. 

ILSVRC top-5 error rate: 3.6 % 



Inception-ResNet - 2016

53 Layers 

Combined residual connections with inception architecture. 

ILSVRC top-5 error rate: 3.5 % 



These models are clearly performing well on object classification.  

How to we determine what they have learned? 

Need some method of “seeing” inside the model to visualize the 
information stored in the filters. 

The first set of filters is in the image space, so we can visualize 
these filters directly:

Filter Visualization



For later layers, there are a variety of methods for visualizing the 
filters. Each method finds an image that maximally activates a 
particular filter. 

• Maximal images from dataset 
• Feed in all of the images and keep track of which image 

maximally activates a filter 

• Deconvolution 
• Run the network in reverse to get most important features of 

an image for an activated filter 

• Gradient ascent in image space 
• Backpropagate from a filter to the image itself, modifying the 

image to maximally activate the filter

Filter Visualization



Top Image Patches - Layer 2
Filter Visualization

Matt Zeiler



Filter Visualization
Deconv on Top Image Patches - Layer 2

Matt Zeiler



Top Image Patches - Layer 3
Filter Visualization

Matt Zeiler



Deconv on Top Image Patches - Layer 3
Filter Visualization

Matt Zeiler



Top Image Patches - Layer 4
Filter Visualization

Matt Zeiler



Deconv on Top Image Patches - Layer 4
Filter Visualization

Matt Zeiler



Top Image Patches - Layer 5
Filter Visualization

Matt Zeiler



Deconv on Top Image Patches - Layer 5
Filter Visualization

Matt Zeiler



Related to visualizing filters through gradient ascent. 

Enforce ‘continuity prior’: produced image must have statistics 
similar to natural images 

Start from an image, either noise or an actual image. Randomly 
enhance various filters throughout the network.

Deep Dream

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html


Deep Dream

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html


Neural Style Transfer
Capture high level statistics of one image, i.e. stylistic essence. 

Run gradient ascent on new image to match high level statistics 
of first image. 

Can transfer high-level features between images.

Gatys et al., 2015



Neural Style Transfer

Gatys et al., 2015



Neural Style Transfer



Unsupervised Learning. All training examples need labels, but 
this is unrealistic. 

Limited Understanding/Reasoning. Great at picking out 
patterns, but no deeper understanding. 

Low-Shot Learning. These networks need many training 
examples of each class. Do not do well with class imbalance.

Limited. How do we make better models?

Open Problems
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