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P(Y = 1|X)

can fit binary labels

logistic regression

logistic function

P(Y = 1|X) =

1

1+ 6—(w"‘x—|—w0)

Y €{0,1}

w'Tx + wg = 0 defines the boundary between the classes

In higher dimensions, this I1s a hyperplane




o Y=0

additional features in X result in additional weights in w



Y e{0,1}

1

P(Y g 1‘X) ' 1+ 6—(wa—|—wo)

use binary cross-entropy loss function

£= 3" [yDlog(P(y: = 1x2)) + (1~ y@)log(1 ~ P(ys = 1x7)

T/ N\

when y; = 1 make the when y; = 0 make the

output close to 1 output close to 0



if Y e{-1,1}

1
1+ e_y(WTX+wO)

P(y|x) =

use logistic loss function

N
J— Z log(l + e_y(”(WTXerwo))

’L:1 A

make sure w2 x® 4w and y'*
have the same sign, and

wlx(® + g is large in magnitude



how do we extend logistic regression to handle multiple classes!
yeA{l,..., K}

approach |
split the points Iinto groups of one vs. rest, train model on each split
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approach !
train one model on all data classes simultaneously

e(w;x—l—wo,k)

P(Y = k|X) = 25_1 W XHWo 1) :

softmax function ' X,

6




e(ng—l—w(),k)

multi-class logistic regression ~ P(Y = k| X)) = Zi{/ T o (W xtwo 5r)

1

assume probabilities of the form P(Y = k) = Ee

(log linear)

(WZX—I—’wQ,k)

Z is the ‘partition function, which normalizes the probabilities

probabilities must sum to one

K K 1
S P =k) =3 Lelvhxtunn -
k=1 k=1

K
therefore Z = Z e(WEXtwo k)
k=1



logistic regression Is a linear classifier

inear scoring function Is passed through the non-linear
logistic function to give a probability output

often works well for simple data distributions

breaks down when confronted with data distributions that are not
linearly separable

AND OR XOR
X5 X5 X5
® o . ® o 1 o
@ o , X, + , = X, ® @ X,

inearly separable inearly separable not linearly separable
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to tackle non-linear data distributions with a linear approach,
we need to turn it Into a linear problem

use a set of non-linear features in which the data are linearly separable

one approach:

use a set of pre-defined non-linear transformations

XOR

X
X17X2 %X17X27X1X2 . N
inear decision hyperbolic decision R
boundary boundary o



to tackle non-linear data distributions with a linear approach,
we need to turn it Into a linear problem

use a set of non-linear features in which the data are linearly separable

another approach:

logistic regression outputs a non-linear transformation,
use multiple stages of logistic regression

XOR
X1,Xo — X1 N X, X4V Xo X
linear decision multiple linear decision
boundary boundaries @ e ®

‘e
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we used multiple stages of linear classifiers to create a
a non-linear classifier

as the number of stages increases, so too does the
expressive power of the resulting non-linear classifier

depth: the number of stages of processing



the point of deep learning

with enough stages of linear/non-linear operations (depth),
we can learn a good set of non-linear features
to linearize any non-linear problem



input features

N IIT

basic operation: logistic regression

.
@@ 623\

summation non-linearity

> oY

artificial neuron
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operations

multiple
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layer of artificial neurons



multiple stages of operations
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notation

1~ to the first layer
W
___Weights



notation

z
z

z

Slr—\ at the first layer
"_summations
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notation

o
"__non-linearity




notation

O
O

O

1~ — at the first layer

\/ units
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notation
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notation

bias unit
/ Sl
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St =Wio+ Z Wi X3

/ 1=1
bias weight
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notation

1 1 +v0
St = wilx¢
vectorized form

(dot product)
23

absorb bias unit into X7
X?,O S 1



notation



notation







number of features

0

N

>

<

matrix form

< >

N
number of data points

27
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matrix form

NO

note: appending biases to W and bias units to X° changes

N° - N°+1
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matrix form

L)



matrix form

input X ° somewhere

( back in here

wt |o( | we 0( W2 a( ))

it's just a (deep, non-linear) function!

note: bias appending omitted for clarity
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train with gradient descent

final layer

X" is the output of the network

Xy

use L£(X*,Y) to compare

@ Xt and Y

take gradients VL of loss wirt.
weights at each level ¢

g =

update the weights to decrease loss,

I@ bring X closerto Y

W« W' —aVy.L

Gl



final layer

Xy

E

g =

= 0w

32

how do we get the gradients’
backpropagation

| . Define a loss function.

2. Use chain rule to recursively
take derivatives at each
level backward through the
network.




output

what is the best form in which to present the labels?

binary labels: Y € {0, 1}

(binary classification)

represent with a single output unit, use binary logistic regression at the last layer

[ b= P(Y = 1|X)

P(Y =0|X)=1- P(Y = 1|X)

B8



output

what is the best form in which to present the labels?

categorical labels: Y € {1,..., K}

(multi-class classification)

represent with a single output unit, regress to the correct class?

> Mb—={1,.... K}

No, in general, classes do not have a humerical relation

class K is not ‘greater’ than class K — 1

CH;



output

what is the best form in which to present the labels?

categorical labels: Y € {1,..., K}

(multi-class classification)

represent with multiple output units, regress to an encoding of the correct class (e.g. binary)

LK)

NV £ K

No, correct output requires coordinated effort from units

implies arbitrary similarities induced by the coding

55



output

what is the best form in which to present the labels?

categorical labels: Y € {1,..., K}

(multi-class classification)

represent with K output units, multi-class logistic regression at the last layer

LK

softmax

Yes

captures iIndependence assumptions in the class structure, and is a valid output

36



output

categorical labels: Y € {1,..., K}

(multi-class classification)

represent with K output units,
multi-class logistic regression at the last layer

| one-hot vector encoding
| example K =5




loss function

probability of x belonging to class k

T
ewkx

multi-class logistic regression PY =k)=—= -
D=1 € B

softmax loss function (cross-entropy)
GWZ%'X
.

K
Zk’:l 2 o

minimize the negative log probability of the correct class

L;=—1log P(Y =y;) = —log

recall:
N

L=-) [y(i) log(P(y; = 1[x")) 4+ (1 — y)) log(1 — P(y; = I\X(i)))}
i=1
softmax loss Is the extension of binary case to multi-class
38



backpropagation
deep networks are just composed functions
Xt =oWro(Wtto(...c(WrX")))
the loss L(X%,Y) is a function of X%, which is a function of each layer's weights W*
therefore, we can find Vwe£ using chain rule

recall

- XP=0(89
i .

at the output layer

oL oL oxt ast

OWL — 9XL 9SL oW L

e



backpropagation

at the output layer

oL oL oXxt oSt

OWL — 9XL 9SL WL

0L
the first two terms are the same §SEL
at the layer before

oL oL oxt oSt oxt-1 pst-i

OWL-1  9XL 9SL 9XL-1 9SL-1 W l-1
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backpropagation
recall

X' =o(8") §¢ = Wwixt?

at the layer before

oL oL oXt 9SSt oxt~! pst—!
OWL-1  9XL 9SL 9XL-1 9SL-1 oW L-1

oL
the first four terms are the same 9sL-1
at the layer before that

oL or oxL 9sL gxL-1 ggL-1 gxL-2 ggL—2

OWL-2  9XL 9SL 9XL-1 9SL-1 pXL-2 HSL-2 gWL-2
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backpropagation

general overview - dynamic programming

compute gradient of loss w.rt. Wt

oL
store oSt

for £=L—1,...,1
oL
use 851 to compute gradient of loss w.rt. TW/*¢

oL
store §s¢

20



backpropagation

0X* derivative of non-linearity w.rt. input
OS* depends on non-linearity used

45



vanishing gradients

It we use saturating non-linearities,
the derivative of the non-linearity
will always be less than one
a(5)

1
in a deep network, there will be many of
these terms multiplied together, shrinking

J the gradient at early layers
the gradient ‘vanishes’

to solve this issue, use non-saturating

non-linearrties rectified linear unit

ReLU(S) = max(0, .5) )

pro: keep gradient signal strong at
early layers

con: partially linearizes the network,
making It less expressive 0 g

4 Glorot, 201 |




rectified linear units

& . 2 ReLU(S) =1
—eReLU(S) =0 G ReLU(S)

L
ER@LU(S) undefined

ReLU(S) = max(0,.9)

415

Glorot, 201 |



adversarial examples

» m -
» VIO alen(y.d(0,2,4)
“panda™ “nematode” “gibbon”
57.7% confidence 8.2% confidence 09.3 % confidence

correct ostrich correct

Goodfellow et al., 2014

46 Szegedy et al., 2013



regularization

we often want to punish model complexity

deep networks are a powerful model class, making it easier for them to overfit

as In other ML methods, we can regularize by putting a penalty on the weights,
and adding this term to the loss function

L L
14 22
A WAL A WAL
(=1 (=1
LI regularization L2 regularization
‘weight sparsity’ ‘weight decay’

this can be achieved through L| or L2 regularization on network’s weights

47



other forms of regularization

dropout

often, deep networks will learn entangled representations, in which the internal
representation depends heavily on coordinated activity from multiple unrts.

to encourage units to learn statistically independent features,
randomly dropout a fraction of the units during each training iteration

something like an ‘internal ensemble’ of an exponential number of different models

during test time, keep all unrts active o

48



dropout

Classification Error %

other forms of regularization

Wlthout dropout

2.0 ||\| ................................................................................................. ..................

| ! J ' !
o8 oxnvaviayesspianeess - ......................... .........................
| : : : .
W

.......

1 | 1 1
0 200000 400000 600000 800000
Number of weight updates
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Srivastava, 2014



other forms of regularization

dropout

visualization of features learned on MNIST digits

without dropout with dropout p = 0.5
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other forms of regularization

early stopping

stop training the model when the validation loss or error plateaus (stops decreasing)

prevents the model from overfitting to the training set

error

validation

training

stop
here

training iterations

o



optimization

gradient descent: feed in the entire dataset, calculate gradients
for each weight, update the weights, repeat until convergence

with a large model and large dataset, this will be an incredibly slow process
gradient contributions from each data example are averaged

accurate gradient, but one epoch results in a single ‘step’

optimization landscape In welight space

5k



optimization
(mini-batch) stochastic gradient descent (SGD): feed in the dataset
one batch at a time, calculate gradients for each weight from that batch,
update the weights, repeat until convergence, randomly shuffling after each epoch
each batch provides a noisy estimate of the gradient

with an adequate batch size, this is often good enough to head in the right direction

noise in the gradient can actually help prevent getting stuck in local optima

optimization landscape In welight space

515



optimization

training a deep neural network involves non-convex optimization

convex optimization: with proper learning rate, guaranteed to converge to global optimum

non-convex optimization: no guarantees, may converge to a local optimum

should we be worried about ending up In local optima?

no, not really.
as the number of weights grows, It tends to become easier to escape these local minima.
they appear to be mostly saddle points, and most local minima are actually pretty good.

optimization landscape In welight space

54



what makes a deep network non-convex?

If we remove the non-linearities. ..

it's the non-linearities!

W€—1

o

WE—Z

0'(

Wﬁ—l

—— Xﬁ

WE—Q

ooe | XV

Wl...f

XO

the network collapses down Into a (convex) linear optimization problem



optimization techniques

vanilla stochastic gradient descent

W« W*—aVyeL

stochastic gradient descent with momentum momentum € (0, 1]

W <— B,U -+ OévWEL

W« W* — 4 vanilla SGD

gradient is influence by previous gradient updates @ 9>

speeds up convergence immensely,
prevents optimization from bouncing back and forth too much

with momentum

rule of thumb:
momentum = 0.9 @ 9)

56
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http://sebastianruder.com/optimizing-gradient-descent/index.html

optimization techniques

problem: how do we set and anneal the learning rate?
why have the same learning rate for all parameters?

adaptive learning rate technigues

adagrad: shrink each parameter’s learning rate according to magnitude of sum of past gradients

adadelta: similar to adagrad, but with exponentially decaying influence from past gradients

RMSprop: similar idea to adadelta

adam: similar to adadelta, but with additional decaying influence from previous gradients
(like momentum)

.........

SGD -
Momentum =
NAG E
Adagrad
Madelta
Rmsprop

- SGD
— Mamentum
== NAG

Adagrad

! _ ; ] tdadelta
A 1; hE o Rmsprop
2 1’ i

!
0
-
—47 _

10 . Ry 1.0

0O e o 03
._c b \'\\_.\ /n_f’., 0.0
10 Ry P
—1.5 e ~.5

oY,

http://sebastianruder.com/optimizing-gradient-descent/index.html
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1957

neural néet winter

1980

1986
1989

neural net winter ||

2006

2009
2011
2011

2012
2012-

deep learning history (abridged)

berceptron learning algorithm

EEELET RIS 2

............
------------
............
------------
............
............
------------

S N BT P D T wes DT
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-----------

_
1'%
f
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"‘-c' L I T st el e

rrvesas s LA AR~ A - G
g

o W e ¥ wreed gl el W=l W
’ y y ’ r 8

pont | POTAWR

neocognitron

- oirel W h~;-.l =l el )

backprop becomes popular
convolutional neural networks

Y o
- - v

A R ST e RS S DT N
g .
¢

'Mark | Perceptron at the Cornell Aeronautical Laboratory’,
hardware implementation of the first Perceptron

unsupervised pre-training of deep networks
(Source:Wikipedia / Cornell Library)

use of GPUs for training deep networks

unsupervised learning of cat from YouTube

deep networks become state-of-the-art for speech recognition
deep networks become state-of-the-art for object recognition
deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc.
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deep learning history (abridged)
1957 perceptron learning algorithm
Uss Ueq

/

Sh
NN
\
\
N

=

neural néet winter

/] 7

-
o

-

—

-

-

g - -
A - " \ -
W, X -

AENEAN
,‘_)‘4 =

¥
Z

- 3
1980 neocognitron input ‘:/ &
1986 backprop becomes popular layer 7z @ | .

. contrast 7~ ~" recognition
1989 convolutional neural networks extraction g layer

masker
. layer
neural net winter |l Fkushima, 1980

2006 unsupervised pre-training of deep networks

2009 use of GPUs for training deep networks

2011 unsupervised learning of cat from You Tube

2011  deep networks become state-of-the-art for speech recognition
2012 deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc.
59



deep learning history (abridged)

1957 perceptron learning algorithm

neural néet winter

Learning Internal Representations

1980 neocognitron by Error Propagation

1986  Dackprop becomes popular

1989 convolutional neural networks D. E. RUMELHART, G. E. HINTON, and R. J. WILLIAMS

neural net winter ||

2006 unsupervised pre-training of deep networks

2009 use of GPUs for training deep networks

2011  unsupervised learning of cat from You Tube

2011  deep networks become state-of-the-art for speech recognition
2012 deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc.
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deep learning history (abridged)

1957 perceptron learning algorithm

neural néet winter

1980 neocognitron
1986 backprop becomes popular

I 9 8 9 CO n VO /u U O n a/ n e u ra/ n e tWO r/<S Teoueiners Subsamping Camclininns SJbSumr!lli'lg- : 15 il .*: ﬁa*.n-;: e

LeCun, 1998

neural net winter ||

2006 unsupervised pre-training of deep networks

2009 use of GPUs for training deep networks

2011 unsupervised learning of cat from You Tube

2011  deep networks become state-of-the-art for speech recognition
2012  deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc.
6|



deep learning history (abridged)

1957 perceptron learning algorithm

Q©OOC0O00) hs

RBM

neural-néet winter

COO0500) ! (OOOAOOOO) hs

REM Y
©O00000) M ©oopooo> hy (OOOPOOO) hi

1980 neocognitron . E Ly
1986 Lo . | O©OOO00Y x O©COOCCY) x OQOOO000) x
ac<proF> = Rl PR Al (a) Train RBM (b) Traian.BM (¢) Train RBM for h*

1989 convolutional neural networks for x for h and y

Teh et al.,, 2006

neural net winter ||

2006 unsupervised pre-training of deep networks

2009 use of GPUs for training deep networks

2011 unsupervised learning of cat from You Tube

2011  deep networks become state-of-the-art for speech recognition
2012  deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc.
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deep learning history (abridged)

1957 perceptron learning algorithm

neural néet winter

1980 neocognitron
1986 backprop becomes popular
1989 convolutional neural networks

NVIDIA

neural net winter ||

2006 unsupervised pre-training of deep networks

2009 use of GPUs for training deep networks

2011  unsupervised learning of cat from You lube

2011  deep networks become state-of-the-art for speech recognition
2012  deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc.
63



deep learning history (abridged)

1957 perceptron learning algorithm

neural-net winter

1980 neocognitron

1986 backprop becomes popular
1989 convolutional neural networks

cat filter learned from unsupervised learning,

neura/ net Wlnter /l https://googleblog.blogspot.com/2012/06/using-large-scale-brain-simulations-forhtml

2006 unsupervised pre-training of deep networks

2009 use of GPUs for training deep networks

2011 unsupervised learning of cat from YouTube

2011  deep networks become state-of-the-art for speech recognition
2012  deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc.
64
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deep learning history (abridged)

1957 perceptron learning algorithm

neural néet winter

Deep Neural Networks for Acoustic Modeling

1980 neocognitron in Specch Recognition
I 986 baCkp Iﬁop becomes pOpU |ar Geoffrey Hinton, Li Deng, Dong Yu, George Dall, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
I 9 89 CO nvolu-uon al Nneu r‘al ne‘t\/\/o |"|<S Senior, Vincent Vankoucke, Patrick Nguyen, Tara Sainath, anc Brian Kingsbury

neural net winter ||

2006 unsupervised pre-training of deep networks

2009 use of GPUs for training deep networks

2011  unsupervised learning of cat from You Tube

2011 deep networks become state-of-the-art for speech recognition
2012 deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc.
65



deep learning history (abridged)

1957 perceptron learning algorithm

neural net winter ey il Tl motoracooter

black widoew lifeboat po-kart |
cockroach amphiblan moped
tick fireboat bumper car

drilling platform

1980 neocognitron
1986 backprop becomes popular

1989 convolutional neural networks e i - e Lt
| grille mushroom grape | epider monkey
: pickup | jelly fungus clderberry titi
beach wagon| gill fungus re bullterrier indri
fire onﬂno' cead-man's-fingers currant howler monkey
neura/ net Wlnte[’ // Krizhevsky, et al., 2012

2006 unsupervised pre-training of deep networks

2009 use of GPUs for training deep networks

2011  unsupervised learning of cat from You Tube

2011  deep networks become state-of-the-art for speech recognition
2012 deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc.
66



deep learning history (abridged)

1957 perceptron learning algorithm pes

Externa Input

N
ﬂeUFG/ net Wlnte[’ Controller |
Zs D
Fead Heads
- T
1980 neocognitron
1986 backprop becomes popular
1989 convolutional neural networks ,c -
neural net winter w; ,
) m% . &

2006 unsupervised pre-training of deep networks
2009 use of GPUs for training deep networks

2011  unsupervised learning of cat from You Tube

T He et al, 2015
2011  deep networks become state-of-the-art for speech recognition Graves et al, 2014
2012 deep networks become state-of-the-art for object recognition Salmans o Sl

Silver et al., 2016

2012-  deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc.
67



recent neural network boom

deep learning is hot right now

what started this boom?

hardware

driving factors

software
O « results » LD N\ e 1
B~ theano Neal=[e=== S|l
TensorFlow N S e e e

68



recent neural network boom

who started this boom!?

yann lecun

yoshua bengio

X

geoff hinton

‘the big three’

...and others

69



recent neural network boom

who started this boom?

Citation indices All Since 2010

Citations 117128 47516

h-index 113 86

i10-index 273 200

yann lecun e E e yoshua bengio

Geoffrey Hinton
Citation indices All Since 2010 Citation indices All Since 2010
Citations 29582 17815 Citations 32736 25285
h-index 77 59 ' h-index 73 65
i10-index 179 141 geOﬁ hlﬂtOn i10-index 245 200
mmmm BN ll ! p———— B l I

2008 2009 2010 2011 2012 2013 2014 2015 2008 2009 2010 111 "H“ 2013 _"«T-v'

Yann LeCun Yoshua Benglo

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/
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neural network winters

research in neural networks has followed a boom-bust cycle

technological breakthrough

.
' ‘e,

.

.
* .

increased excitement,
research

v

A.l hype
we’ve finally solved intelligence!
general A.l is only 5-10 years away!

v

research doesn’t live up to expectations

v

funding dries up

v

most researchers move on to other pursuits °

71
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neural network winters

we're obviously in a boom period.
is this time any different?

yes and no

predicting the future of All. research progress Is notoriously difficult

it's possible that deep learning research will hit a wall,
where either it becomes too computationally expensive
for most individuals to do groundbreaking research
or a new, better approach comes along

however, deep learning is now commercially successful.
most large tech companies profit from it.

so as long as it remains the state-of-the-art approach,
there will be (funding for) basic research.

gle B Vicrosoft  AIMAZ0N

.



beware the hype

just because deep learning i1s booming,
it doesn't mean human-level All. is just around the corner

saying that something is 5-10 years away Is almost
always just pure speculation

it someone tries to tell you that deep learning works
off of the same principles as the brain,
tell them that they don’t know what they're talking about

cool graphics, but highly inaccurate




does deep learning live up to the hype!

deep learning Is nothing deep learning Is the dawn

more than a passing phase of general A. 1.

non-believers believers
-—

we don't have a great inturtion consistently beats all other methods
for how or why it works on vision, NLP benchmarks
models are often uninterpretable learn your features instead of
a.k.a ‘black box’ hand-coding them
doesn't actually work like the brain it's biologically inspired!
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where does deep learning fit in?

deep learning is a useful method for approximating complicated, hierarchical functions.
this makes it well-suited for many A. |. tasks

but ultimately it's just a tool for linearizing non-linear data.
it doesn't replace other machine learning techniques, rather, it enhances them

still much work to be done In understanding these models
-what do they learn?
-how do we train them more efficiently?
-architectural principles?

better methods will be developed eventually, but they will almost certainly involve
-hierarchies
-learned features
-many parameters
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when to use deep |earning?

try a simple method first

deep learning requires compute and data
unless you have both, deep learning won't work

deep learning works by hierarchically sectioning non-linear surfaces
.e. deep learning works best on non-linear data with hierarchical structure

why not other methods!?
deep learning's power is Iin Its depth
most other methods are not capable of depth

or If they are, they are difficult to train
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next lecture

convolutional neural networks
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