
Deep Learning
 Part I

1

CS/CNS/EE 155
MACHINE LEARNING & DATA MINING



2

X

Y

0

1

P (Y = 1|X)

w

|
x+ w0 = 0 defines the boundary between the classes

in higher dimensions, this is a hyperplane

logistic regression

P (Y = 1|X) =
1

1 + e�(w|
x+w0)

logistic function

can fit binary labels Y 2 {0, 1}



3

Y = 1

Y = 0

X1

X2

additional features in result in additional weights inX w



4

if Y 2 {0, 1}

P (Y = 1|X) =
1

1 + e�(w|
x+w0)

use binary cross-entropy loss function

L = �
NX

i=1

h
y(i) log(P (yi = 1|x(i)

)) + (1� y(i)) log(1� P (yi = 1|x(i)
))

i

when yi = 1 make the
output close to yi = 1

when make the
output close to 

yi = 0

yi = 0



5

if Y 2 {�1, 1}

P (y|x) = 1

1 + e�y(wT
x+w0)

use logistic loss function

L =

NX

i=1

log(1 + e�y(i)(wT
x

(i)+w0)
)

make sure w

T
x

(i) + w0 and y(i)

have the same sign, and
w

T
x

(i) + w0 is large in magnitude



6

how do we extend logistic regression to handle multiple classes?

approach I
split the points into groups of one vs. rest, train model on each split

X1

X2

X1

X2

X1

X2

X1

X2

y 2 {1, . . . ,K}

approach II
train one model on all data classes simultaneously

X1

X2

softmax function

P (Y = k|X) =
e(w

|
kx+w0,k)

PK
k0=1 e

(w|
k0x+w0,k0 )



is the ‘partition function,’ which normalizes the probabilitiesZ

probabilities must sum to one

KX

k=1

P (Y = k) =
KX

k=1

1

Z
e(w

|
kx+w0,k) = 1

assume probabilities of the form
(log linear)

P (Y = k) =
1

Z
e(w

|
kx+w0,k)

Z =
KX

k=1

e(w
|
kx+w0,k)therefore

7

P (Y = k|X) =
e(w

|
kx+w0,k)

PK
k0=1 e

(w|
k0x+w0,k0 )

multi-class logistic regression



8

logistic regression is a linear classifier
linear scoring function is passed through the non-linear

logistic function to give a probability output

often works well for simple data distributions

breaks down when confronted with data distributions that are not 
linearly separable

X1

X2

XOR

not linearly separable
X1

X2

OR

linearly separable
X1

X2

AND

linearly separable



9

one approach: 
use a set of pre-defined non-linear transformations

X1, X2 ! X1, X2, X1X2

X1

X2

XOR

linear decision
boundary

hyperbolic decision
boundary

use a set of non-linear features in which the data are linearly separable

to tackle non-linear data distributions with a linear approach,
we need to turn it into a linear problem



10

to tackle non-linear data distributions with a linear approach,
we need to turn it into a linear problem

use a set of non-linear features in which the data are linearly separable

another approach: 
logistic regression outputs a non-linear transformation,

use multiple stages of logistic regression 

X1

X2

XOR
X1, X2 ! X1 ^X2, X1 _X2

XOR: ¬(X1 ^X2) ^ (X1 _X2)

linear decision
boundary

multiple linear decision
boundaries



11

we used multiple stages of linear classifiers to create a
a non-linear classifier 

as the number of stages increases, so too does the
expressive power of the resulting non-linear classifier

depth: the number of stages of processing



12

the point of deep learning

with enough stages of linear/non-linear operations (depth),
we can learn a good set of non-linear features

to linearize any non-linear problem



13

basic operation: logistic regression

X1

X2

X3

X4

Xp

X

weights

inp
ut

 fe
at

ur
es summation non-linearity

output feature

artificial neuron



14

multiple operations

X1

X2

X3

X4

Xp

X

X

X

layer of artificial neurons



15

multiple stages of operations

X

X

X

X

X

artificial neural network



16

notation

X

X

X

X

X

X0

units

at the input layer



17

notation

X

X

X

X

X

W 1

weights

to the first layer



18

notation

X

X

X

X

X

S1

summations

at the first layer



19

X

X

X

X

X

notation

�
non-linearity



20

X

X

X

X

X

notation

X1

units

at the first layer



21

X

X

X

X

X

notation

etc.



22

X

X

X

X

X

notation

S1
1 = W 1

1,0 +
N0X

i=1

W 1
1,iX

0
i

S1
1

W 1
1,0

W
1
1,1

W
1
1,
2

W
1

1,
3

W
1

1,
N

0

1

X0
1

X0
2

X0
3

X0
N0

number of units in layer 0

bias weight

bias unit



23

X

X

X

X

X

notation

S1
1

W 1
1,0

W
1
1,1

W
1
1,
2

W
1

1,
3

W
1

1,
N

0

1

X0
1

X0
2

X0
3

X0
N0

S1
1 = W 1

1X
0
1

absorb bias unit into

vectorized form
(dot product)

X0
1

X0
1,0 = 1



24

X

X

X

X

X

notation

S1
1

1

X0
1

X0
2

X0
3

X0
N0

fully vectorized form
(matrix multiplication)

S1
2

S1
N1

S1 = W 1X0



25

X

X

X

X

X

notation

S1
1

1

X0
1

X0
2

X0
3

X0
N0

element-wise non-linearity

S1
2

S1
N1

X1 = �(S1)

X1
1

X1
2

X1
N1



26

X

X

X

X

X

notation

S1
1

1

X0
1

X0
2

X0
3

X0
N0

S1
2

S1
N1

X1
1

X1
2

X1
N1

1
append a bias unit

with weights

and proceed



27

matrix form

X0

Y

number of data points

nu
m

be
r o

f f
ea

tu
re

s
N

0

N



28

matrix form

X0

W 1
=

S1

N0

N0

N

N1N1

N

note: appending biases to       and bias units to      changesW 1 X0

N0 ! N0 + 1



29

matrix form

=

S1
N1

N

N1

N

X1 �( )



30

matrix form

=�( )�( (

�(

(

X` W ` W `�1 �( (

note: bias appending omitted for clarity

it’s just a (deep, non-linear) function!

W `�2

input        somewhere
back in here
X0

N

N `



31

X

X

X
XL

1

XL
2

XL
NL

final layer

L(XL, Y )use to compare
XL Yand

take gradients           of loss w.r.t.
weights at each level `

rW `L

XL is the output of the network

update the weights to decrease loss,
bring        closer to XL Y

train with gradient descent

W `  W ` � ↵rW `L



32

1. Define a loss function.

2. Use chain rule to recursively
take derivatives at each

level backward through the
network.

how do we get the gradients?
backpropagation

X

X

X
XL

1

XL
2

XL
NL

final layer



binary labels: Y 2 {0, 1}
(binary classification)

what is the best form in which to present the labels?

output

P (Y = 0|X) = 1� P (Y = 1|X)

represent with a single output unit, use binary logistic regression at the last layer

X
XL

1 P (Y = 1|X)
[0, 1]

33



categorical labels: 
(multi-class classification)

Y 2 {1, . . . ,K}

34

what is the best form in which to present the labels?

output

No, in general, classes do not have a numerical relation

Kclass is not ‘greater’ than class K � 1

represent with a single output unit, regress to the correct class?

X
XL

1

(�1,1)
Y 2 {1, . . . ,K}



35

what is the best form in which to present the labels?

output

categorical labels: 
(multi-class classification)

Y 2 {1, . . . ,K}

No, correct output requires coordinated effort from units

implies arbitrary similarities induced by the coding

represent with multiple output units, regress to an encoding of the correct class (e.g. binary)

X

X

X
XL

1

XL
2

XL
NL

[0, 1]

[0, 1]

[0, 1]

{0, 1}

{0, 1}

{0, 1}

}Y 2 {1, . . . ,K}

NL 6= K



36

what is the best form in which to present the labels?

output

categorical labels: 
(multi-class classification)

Y 2 {1, . . . ,K}

Yes

captures independence assumptions in the class structure, and is a valid output

represent with     output units, multi-class logistic regression at the last layerK

X

X

X
XL

1

XL
2

XL
K

[0, 1]

[0, 1]

[0, 1]

P (Y = 1|X)

P (Y = 2|X)

P (Y = K|X)

}Y 2 {1, . . . ,K}

softmax



one-hot vector encoding
K = 5example

37

output

categorical labels: 

represent with     output units,
multi-class logistic regression at the last layer

(multi-class classification)
Y 2 {1, . . . ,K}

K

Y = 1

1

0

0

0

0

1

0

0

0

0 1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

Y = 2 Y = 3 Y = 4 Y = 5



38

loss function

multi-class logistic regression P (Y = k) =
ew

|
kx

PK
k0=1 e

w

|
k0x

probability of     belonging to class
x

k

minimize the negative log probability of the correct class

softmax loss function (cross-entropy)

Li = � logP (Y = yi) = � log

ew
|
yi

x

PK
k0=1 e

w

|
k0x

L = �
NX

i=1

h
y(i) log(P (yi = 1|x(i)

)) + (1� y(i)) log(1� P (yi = 1|x(i)
))

i
recall:

softmax loss is the extension of binary case to multi-class



39

backpropagation

deep networks are just composed functions

XL = �(WL�(WL�1�(. . .�(W 1X0)))))

the loss L(XL, Y ) is a function of XL, which is a function of each layer’s weights W `

therefore, we can find using chain rulerW `L

S` = W `X`�1X` = �(S`)

recall

@L
@WL

=
@L
@XL

@XL

@SL

@SL

@WL

at the output layer



40

backpropagation

@L
@WL

=
@L
@XL

@XL

@SL

@SL

@WL

at the output layer

at the layer before

@L
@WL�1

=
@L
@XL

@XL

@SL

@SL

@XL�1

@XL�1

@SL�1

@SL�1

@WL�1

the first two terms are the same
@L
@SL

S` = W `X`�1X` = �(S`)

recall



41

backpropagation

at the layer before

@L
@WL�1

=
@L
@XL

@XL

@SL

@SL

@XL�1

@XL�1

@SL�1

@SL�1

@WL�1

@L
@WL�2

=
@L
@XL

@XL

@SL

@SL

@XL�1

@XL�1

@SL�1

@SL�1

@XL�2

@XL�2

@SL�2

@SL�2

@WL�2

at the layer before that
the first four terms are the same

@L
@SL�1

S` = W `X`�1X` = �(S`)

recall



42

backpropagation

general overview - dynamic programming

compute gradient of loss w.r.t. WL

store
@L
@SL

for ` = L� 1, . . . , 1

W `use to compute gradient of loss w.r.t. 
@L

@S`+1

@L
@S`store



43

backpropagation

@S`

@X`�1
= W `

@S`

@W `
= (X`�1)|

@X`

@S`

derivative of non-linearity w.r.t. input
depends on non-linearity used

S` = W `X`�1X` = �(S`)

recall



44

vanishing gradients

0

1

S

�(S)

if we use saturating non-linearities,
the derivative of the non-linearity

will always be less than one

in a deep network, there will be many of
these terms multiplied together, shrinking

the gradient at early layers

the gradient ‘vanishes’

0 S

to solve this issue, use non-saturating
non-linearities

pro: keep gradient signal strong at
early layers

con: partially linearizes the network,
making it less expressive

ReLU(S) = max(0, S) ReLU(S)

rectified linear unit

Glorot, 2011



45

rectified linear units

ReLU(S) = max(0, S)

0 S

d

dS
ReLU(S) = 0

d

dS
ReLU(S) = 1

Glorot, 2011

d

dS
ReLU(S) = 1undefined



46

adversarial examples

Szegedy et al. , 2013
Goodfellow et al. , 2014



47

regularization

this can be achieved through L1 or L2 regularization on network’s weights 

we often want to punish model complexity

deep networks are a powerful model class, making it easier for them to overfit

as in other ML methods, we can regularize by putting a penalty on the weights,
 and adding this term to the loss function

�
LX

`=1

||W `||22

L2 regularization 
‘weight decay’

�
LX

`=1

||W `||1

L1 regularization 
‘weight sparsity’



48

other forms of regularization
dropout

often, deep networks will learn entangled representations, in which the internal
representation depends heavily on coordinated activity from multiple units.

this is referred to as ‘fragile co-adaptation,’ and often generalizes poorly

to encourage units to learn statistically independent features,
randomly dropout a fraction of the units during each training iteration

something like an ‘internal ensemble’ of an exponential number of different models

Srivastava, 2014during test time, keep all units active



49

other forms of regularization
dropout

Srivastava, 2014



50

other forms of regularization
dropout

Srivastava, 2014

with dropout p = 0.5without dropout
visualization of features learned on MNIST digits

redundant features



51

other forms of regularization
early stopping

stop training the model when the validation loss or error plateaus (stops decreasing)

prevents the model from overfitting to the training set

training iterations

error

validation

training

stop
here



52

optimization

gradient descent: feed in the entire dataset, calculate gradients
for each weight, update the weights, repeat until convergence

with a large model and large dataset, this will be an incredibly slow process

accurate gradient, but one epoch results in a single ‘step’

gradient contributions from each data example are averaged

optimization landscape in weight space



53

optimization
(mini-batch) stochastic gradient descent (SGD): feed in the dataset

one batch at a time, calculate gradients for each weight from that batch,
update the weights, repeat until convergence, randomly shuffling after each epoch

each batch provides a noisy estimate of the gradient

noise in the gradient can actually help prevent getting stuck in local optima

with an adequate batch size, this is often good enough to head in the right direction

optimization landscape in weight space



54

optimization

training a deep neural network involves non-convex optimization 

convex optimization: with proper learning rate, guaranteed to converge to global optimum

non-convex optimization: no guarantees, may converge to a local optimum

should we be worried about ending up in local optima?
no, not really.

as the number of weights grows, it tends to become easier to escape these local minima. 
they appear to be mostly saddle points, and most local minima are actually pretty good.

optimization landscape in weight space



what makes a deep network non-convex?

it’s the non-linearities!

=�( )�(

(

�(

(

X` W ` W `�1 �(

(

W `�2 X0

if we remove the non-linearities…

=X` W ` W `�1 W `�2 X0

=X` X0W 1...`

the network collapses down into a (convex) linear optimization problem



optimization techniques

W `  W ` � ↵rW `L

vanilla stochastic gradient descent

stochastic gradient descent with momentum

W `  W ` � µ

µ �µ+ ↵rW `L

momentum 2 (0, 1]

gradient is influence by previous gradient updates

speeds up convergence immensely,
prevents optimization from bouncing back and forth too much

rule of thumb:
momentum = 0.9

vanilla SGD

with momentum

56 http://sebastianruder.com/optimizing-gradient-descent/index.html

http://sebastianruder.com/optimizing-gradient-descent/index.html


optimization techniques
problem: how do we set and anneal the learning rate?

why have the same learning rate for all parameters?

adagrad: shrink each parameter’s learning rate according to magnitude of sum of past gradients

adadelta: similar to adagrad, but with exponentially decaying influence from past gradients

RMSprop: similar idea to adadelta

adam: similar to adadelta, but with additional decaying influence from previous gradients
(like momentum)

adaptive learning rate techniques

57 http://sebastianruder.com/optimizing-gradient-descent/index.html

http://sebastianruder.com/optimizing-gradient-descent/index.html


58

deep learning history (abridged)
perceptron learning algorithm1957

neocognitron
1986 backprop becomes popular
1989 convolutional neural networks

2006 unsupervised pre-training of deep networks
2009 use of GPUs for training deep networks
2011 unsupervised learning of cat from YouTube
2011 deep networks become state-of-the-art for speech recognition
2012 deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc. 

neural net winter

neural net winter II
'Mark I Perceptron at the Cornell Aeronautical Laboratory’,

hardware implementation of the first Perceptron
(Source: Wikipedia / Cornell Library)

1980



59

deep learning history (abridged)
perceptron learning algorithm1957

1980 neocognitron
1986 backprop becomes popular
1989 convolutional neural networks

2006 unsupervised pre-training of deep networks
2009 use of GPUs for training deep networks
2011 unsupervised learning of cat from YouTube
2011 deep networks become state-of-the-art for speech recognition
2012 deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc. 

neural net winter

neural net winter II Fukushima, 1980



60

deep learning history (abridged)
perceptron learning algorithm1957

1980 neocognitron
1986 backprop becomes popular
1989 convolutional neural networks

2006 unsupervised pre-training of deep networks
2009 use of GPUs for training deep networks
2011 unsupervised learning of cat from YouTube
2011 deep networks become state-of-the-art for speech recognition
2012 deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc. 

neural net winter

neural net winter II



61

deep learning history (abridged)
perceptron learning algorithm1957

1980 neocognitron
1986 backprop becomes popular
1989 convolutional neural networks

2006 unsupervised pre-training of deep networks
2009 use of GPUs for training deep networks
2011 unsupervised learning of cat from YouTube
2011 deep networks become state-of-the-art for speech recognition
2012 deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc. 

neural net winter

neural net winter II
LeCun, 1998



62

deep learning history (abridged)
perceptron learning algorithm1957

1980 neocognitron
1986 backprop becomes popular
1989 convolutional neural networks

2006 unsupervised pre-training of deep networks
2009 use of GPUs for training deep networks
2011 unsupervised learning of cat from YouTube
2011 deep networks become state-of-the-art for speech recognition
2012 deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc. 

neural net winter

neural net winter II
Teh et al., 2006



63

deep learning history (abridged)
perceptron learning algorithm1957

1980 neocognitron
1986 backprop becomes popular
1989 convolutional neural networks

2006 unsupervised pre-training of deep networks
2009 use of GPUs for training deep networks
2011 unsupervised learning of cat from YouTube
2011 deep networks become state-of-the-art for speech recognition
2012 deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc. 

neural net winter

neural net winter II
NVIDIA



64

deep learning history (abridged)
perceptron learning algorithm1957

1980 neocognitron
1986 backprop becomes popular
1989 convolutional neural networks

2006 unsupervised pre-training of deep networks
2009 use of GPUs for training deep networks
2011 unsupervised learning of cat from YouTube
2011 deep networks become state-of-the-art for speech recognition
2012 deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc. 

neural net winter

neural net winter II cat filter learned from unsupervised learning, 
https://googleblog.blogspot.com/2012/06/using-large-scale-brain-simulations-for.html

https://googleblog.blogspot.com/2012/06/using-large-scale-brain-simulations-for.html


65

deep learning history (abridged)
perceptron learning algorithm1957

1980 neocognitron
1986 backprop becomes popular
1989 convolutional neural networks

2006 unsupervised pre-training of deep networks
2009 use of GPUs for training deep networks
2011 unsupervised learning of cat from YouTube
2011 deep networks become state-of-the-art for speech recognition
2012 deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc. 

neural net winter

neural net winter II



66

deep learning history (abridged)
perceptron learning algorithm1957

1980 neocognitron
1986 backprop becomes popular
1989 convolutional neural networks

2006 unsupervised pre-training of deep networks
2009 use of GPUs for training deep networks
2011 unsupervised learning of cat from YouTube
2011 deep networks become state-of-the-art for speech recognition
2012 deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc. 

neural net winter

neural net winter II Krizhevsky, et al., 2012



67

deep learning history (abridged)
perceptron learning algorithm1957

1980 neocognitron
1986 backprop becomes popular
1989 convolutional neural networks

2006 unsupervised pre-training of deep networks
2009 use of GPUs for training deep networks
2011 unsupervised learning of cat from YouTube
2011 deep networks become state-of-the-art for speech recognition
2012 deep networks become state-of-the-art for object recognition
2012- deep learning boom: ResNets, Neural Turing Machine,

deep generative models, deep reinforcement learning, etc. 

neural net winter

neural net winter II

He et al., 2015
Graves et al., 2014

Salimans et al., 2016
Minh et al., 2015
Silver et al., 2016

…



68

recent neural network boom

deep learning is hot right now

what started this boom?

hardware data

driving factors

research discoveriessoftware

results



69

recent neural network boom
who started this boom?

geoff hinton

yann lecun yoshua bengio

…and others

‘the big three’



70

recent neural network boom
who started this boom?

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/

geoff hinton

yann lecun yoshua bengio



71

neural network winters

research in neural networks has followed a boom-bust cycle

technological breakthrough

increased excitement,
research

A.I. hype
we’ve finally solved intelligence!

general A.I. is only 5-10 years away!

research doesn’t live up to expectations

funding dries up

most researchers move on to other pursuits



72

neural network winters
we’re obviously in a boom period.

is this time any different?

yes and no

predicting the future of A.I. research progress is notoriously difficult

it’s possible that deep learning research will hit a wall,
where either it becomes too computationally expensive

for most individuals to do groundbreaking research
or a new, better approach comes along

however, deep learning is now commercially successful.
most large tech companies profit from it.

so as long as it remains the state-of-the-art approach,
there will be (funding for) basic research.



73

beware the hype

just because deep learning is booming,
it doesn’t mean human-level A.I. is ‘just around the corner’

saying that something is 5-10 years away is almost
always just pure speculation

if someone tries to tell you that deep learning works
off of the same principles as the brain,

tell them that they don’t know what they’re talking about

cool graphics, but highly inaccurate



74

does deep learning live up to the hype?

deep learning is nothing
more than a passing phase 

deep learning is the dawn
of general A. I.

non-believers believers

we don’t have a great intuition
for how or why it works

models are often uninterpretable
a.k.a ‘black box’

doesn’t actually work like the brain

consistently beats all other methods
on vision, NLP benchmarks

learn your features instead of
hand-coding them

it’s biologically inspired!



75

where does deep learning fit in?

deep learning is a useful method for approximating complicated, hierarchical functions.
this makes it well-suited for many A. I. tasks

but ultimately it’s just a tool for linearizing non-linear data.
it doesn’t replace other machine learning techniques, rather, it enhances them

still much work to be done in understanding these models
-what do they learn?

-how do we train them more efficiently?
-architectural principles?

better methods will be developed eventually, but they will almost certainly involve
-hierarchies

-learned features
-many parameters



76

when to use deep learning?

deep learning requires compute and data
unless you have both, deep learning won’t work

deep learning works by hierarchically sectioning non-linear surfaces
i.e. deep learning works best on non-linear data with hierarchical structure

try a simple method first

why not other methods?

deep learning’s power is in its depth

most other methods are not capable of depth
or if they are, they are difficult to train



77

next lecture

convolutional neural networks




