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x1

x2
y = 0
y = 1

x = (x1, x2)

we want to learn non-linear decision boundaries

we can do this by composing linear decision boundaries
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x1

x2

xM

input 
features

weights

sums

⌃

non- 
linearities

⌃

⌃

1

1

⌃

⌃

⌃

hidden 
features

weights

sums
non- 

linearities

neural networks formalize a method for building these composed functions

deep networks are universal function approximators
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each artificial neuron defines a (hyper)plane:

0 = w0 + w1x1 + w2x2 + . . . wMxM

summation: distance from plane to input

non-linearity: convert distance into non-linear field

distance

plane example 
transformed 

distance

plane

the dot product is the shortest distance between a point and a plane

a geometric interpretation
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1. cut the space up with hyperplanes 
2. evaluate distances of points to hyperplanes 
3. non-linearly transform these distances to get new points

repeat until data have been linearized



7

images

“hello”

sound & text virtual/physical control tasks

to scale deep networks to these domains, 
we often need to use inductive biases



I N D U C T I V E  B I A S E S
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ultimately, we care about solving tasks

Krizhevsky et al., 2012

object recognition

Ren et al., 2016

object detection object segmentation

He et al., 2017

text translation

Wu et al., 2016

Weston et al., 2015

text question answering
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ultimately, we care about solving tasks

atari

Minh et al., 2013

object manipulation

Levine, Finn, et al., 2016

go

Silver, Huang et al., 2016

survival & reproduction e.g. teaching
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bias variance

performing any task involves a bias-variance tradeoff
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two components for solving any task

priors
(bias)

learning
(variance)
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priors
things assumed beforehand

x1

x2

xM

⌃

⌃

⌃

1

1

⌃

⌃

⌃

architecture activities, outputs

w1

w2

L2

param. constraints

model 1

model 2

param. values
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learning
things extracted from data

Loss

Weight

LOSS/ERROR

GRADIENT

IMPROVEMENT

filter
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it’s a balance!

strong priors, minimal learning 
• fast/easy to learn and deploy 
• may be too rigid, unadaptable

weak priors, much learning 
• slow/difficult to learn and deploy 
• flexible, adaptable

for a desired level of performance on a task…

choose priors and collect data to obtain a model 
that achieves that performance in the minimal amount of time

data
x1

x2

xM

⌃

⌃

⌃

1

1

⌃

⌃

⌃
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priors are essential - always have to make some assumptions, 
cannot integrate over all possible models

we are all initialized from evolutionary priors

livescience.com

humans seem to have a larger capacity for learning than other organisms
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up until now, all of our machines have been purely based on priors

these machines can perform tasks that are impossible to hand-design

for the first time in history, we can now create machines that also learn

…but they are mostly still based on priors!

Kormushev et al.
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we can exploit known structure in spatial and sequential data 
to impose priors (i.e. inductive biases) on models

this allows us to learn models in complex, high-dimensional domains 
while limiting the number of parameters and data examples

x

y

t

inductive: inferring general laws from examples



C O N V O L U T I O N A L  
N E U R A L  N E T W O R K S
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task: object recognition

Yisong

discriminative mapping from image to object identity
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images contain all of the information about the 
binary latent variable Yisong/Not Yisong

extract the relevant information about this 
latent variable to form conditional probability

p(Yisong| )inference: 

notice that images also contain other nuisance 
information, such as pose, lighting, background, etc.

want to be invariant to nuisance information
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data, label collection

the mapping is too difficult to 
define by hand, 

need to learn from data

Yisong Not Yisong

then, we need to choose 
a model architecture…

x1

x2

xM

⌃

⌃

⌃

1

1

⌃

⌃

⌃
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standard neural networks require a fixed input size…

clearer patterns, 
but more parameters

fewer parameters, 
but unclear patterns

280 x 280 x 3205 x 205 x 3150 x 150 x 3

15 
x 

15 
x 
3

50 x 50 
x 3

35 
x 

35 
x 
3

25 
x 

25 
x 
3

100 x 100 x 375 x 75 x 3

235,200

126,075

67,500

30,000

16,875
7,500

3,675

1,875
675
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convert to grayscale…

clearer patterns, 
but more parameters

fewer parameters, 
but unclear patterns

280 x 280 x 1205 x 205 x 1150 x 150 x 1

15 
x 

15 
x 
1

50 x 50 
x 1

35 
x 

35 
x 
1

25 
x 

25 
x 
1

100 x 100 x 175 x 75 x 1

78,400

42,025

22,500

10,000

5,625
2,500

1,225

625
225
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10,000

1

100 x 100 x 1

10,000

reshape
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?

how many units do we need?

x1

x2

xM

⌃

⌃

⌃

1

10
,0

00
INPUT

1

10

100

1,000

10,000

100,000

1,000,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

# weights# units x    10,000  =

if we want to recognize even a few basic patterns at each location, 
the number of parameters will explode!
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to reduce the amount of learning, 
we can introduce inductive biases

exploit the spatial structure of image data
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locality
nearby areas tend to contain stronger patterns

nearby patches tend to share characteristics 
and are combined in particular ways

nearby pixels tend to be similar and vary  
in particular ways

nearby regions tend to be found 
in particular arrangements 
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translation invariance
relative (rather than absolute) positions are relevant

Yisong’s identity is independent of absolute location of his pixels
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let’s translate locality and translation invariance into inductive biases

locality
nearby areas tend 
to contain stronger 

patterns

inputs can be 
restricted to regions

⌃

maintain spatial ordering

translation 
invariance
relative positions 

are relevant

same filters can be applied 
throughout the input 

⌃

⌃

same weights
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these are the inductive biases of convolutional neural networks

special case of standard (fully-connected) neural networks

⌃

fully-connected

⌃

convolutional

weight savings

convolutional

⌃

⌃

(same weights)

fully-connected

⌃

⌃

(different weights)

weight savings

these inductive biases make the number of weights independent of the input size!
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convolve a set of filters with the input

filter weights:

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

take inner (dot) product of filter and each input location

measures degree of filter feature at input location

feature map

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html
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use padding to preserve spatial size

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

typically add zeros around the perimeter

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html
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use stride to downsample the input

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

only compute output at some integer interval

stride = 2

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html
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filters are applied to all input channels

3 x 3 x 3 filter tensor

each filter results in a new output channel

channel 2

channel 1

channel 3
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can be applied with padding and stride

5

0

0

0

21

1

8

3

3

4

3

2

1

4

2

5 8

2 4

pooling locally aggregates values in each feature map

predefined operation: maximum, average, etc.

downsampling and invariance
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convolutional pop-quiz

5

5

16

input feature map

3

3

?

filters

?*
36

?

?

output feature map

if we use unit stride and no padding then…

how many filters are there?

what size is each filter?

what is the output filter map size?

36 same as the number of output channels

3 x 3 x 16 channels match the number of input channels

3 x 3 x 36 result of only valid convolutions
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Caltech-101

101 classes, 
9,146 images

Caltech-256

256 classes, 
30,607 images

CIFAR-10

10 classes, 
60,000 images

CIFAR-100

100 classes, 
60,000 images

ImageNet
Competition

1,000 classes, 
1.2 million images

Full

21,841 classes, 
14 million images

natural image datasets
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convolutional models for classification

LeNet

AlexNet

VGG

GoogLeNet ResNet Inception v4

DenseNetResNeXt
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convolutional models for detection, segmentation, etc.

R-CNN Fast R-CNN Faster R-CNN

FCN Hourglass U-Net

YOLOMask R-CNN



41 https://www.youtube.com/watch?v=OOT3UIXZztE



42 https://www.youtube.com/watch?v=pW6nZXeWlGM
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convolutional models for image generation

DC-GAN convolutional VAE Pixel CNN



44 https://www.youtube.com/watch?v=XOxxPcy5Gr4
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filter visualization

Zeiler, 2013
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filter visualization

Zeiler, 2013
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filter visualization

Zeiler, 2013
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filter visualization

Zeiler, 2013
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filter visualization

Zeiler, 2013
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filter visualization

Zeiler, 2013
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filter visualization

Zeiler, 2013
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filter visualization

Zeiler, 2013
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filter visualization

Zeiler, 2013
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filter visualization

https://distill.pub/2017/feature-visualization/
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convolutions applied to sequences

WaveNet

https://deepmind.com/blog/wavenet-launches-google-assistant/
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convolutions in non-euclidean spaces

Spline CNN Graph Convolutional Network

Fey et al., 2017 Kipf & Welling, 2016



57

recapitulation

we can exploit spatial structure to impose inductive biases on the model

⌃

locality

⌃

⌃

translation invariance

this limits the number of parameters required, 
reducing flexibility in reasonable ways

can then scale these models to complex data sets to perform difficult tasks

ImageNet

recognition detection segmentation generation



R E C U R R E N T  
N E U R A L  N E T W O R K S
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task: speech recognition

mapping from input waveform to sequence of characters

Graves & Jaitly, 2014
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the input waveform contains all of the information 
about the corresponding transcribed text

form a discriminative mapping: p(text sequence| )

again, there is nuisance information in the waveform coming from the 
speaker’s voice characteristics, volume, background, etc.
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the mapping is too difficult to 
define by hand, 

need to learn from data

data, label collection

Audio Transcriptions

“OK Google…”

“Hey Siri…”

“Yo Alexa…”

x1

x2

xM

⌃

⌃

⌃

1

1

⌃

⌃

⌃

but how do we define 
the network architecture?
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problem: inputs can be of variable size

standard neural networks can only handle data of a fixed input size

?

x1

x2
⌃

⌃

⌃

1

1

⌃

⌃

⌃
x?
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wait, but convolutional networks can handle variable input sizes…
can’t we just use them?

yes, we could

however, this relies on a fixed input window size

we may be able to exploit additional structure in sequence data 
to impose better inductive biases
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t

the structure of sequence data

sequence data also tends to obey

locality: nearby regions tend to form stronger patterns

translation invariance: patterns are relative rather than absolute

but has a single axis on which extended patterns occur
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to mirror the sequential structure of the data, 
we can process the data sequentially

maintain an internal representation during processing

potentially infinite effective input window
fixed number of parameters

t
each set of colored arrows denotes shared weights

INPUT

HIDDEN

OUTPUT
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a recurrent neural network (RNN) can be expressed as

Hidden State

ht = �(W|
h[ht�1,xt])

Output

yt = �(W|
yht)
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basic recurrent networks are also a special case 
of standard neural networks with skip connections and shared weights

same

Depth = Steps
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therefore, we can use standard backpropagation to train, 
resulting in backpropagation through time (BPTT)

Gradient
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primary difficulty of training RNNs involves 
propagating information over long horizons

e.g. input at one step is predictive of output at much later step

learning extended sequential dependencies 
requires propagating gradients over long horizons

• vanishing / exploding gradients 
• large memory/computational footprint
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naïve attempt to fix information propagation issue

add skip connections across steps

information, gradients can propagate more easily

• increases computation 
• must set limit on window size

but…
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add trainable memory to the network
read from and write to “cell” state

Output Gate

Cell State

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)

ft = �(W|
f [ht�1,xt])it = �(W|

i [ht�1,xt])ot = �(W|
o[ht�1,xt])

ht�1

ct�1 ct

ht

xt

yt



Output Gate

Cell State
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add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft it ot

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)xt

yt



Output Gate

Cell State
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add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft it ot

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)xt

yt



Output Gate

Cell State
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add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft = �(W|
f [ht�1,xt])it ot

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)xt

yt



Output Gate

Cell State

75

add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft it = �(W|
i [ht�1,xt])ot

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)xt

yt



Output Gate

Cell State
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add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft = �(W|
f [ht�1,xt])it = �(W|

i [ht�1,xt])ot

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)xt

yt



Output Gate

Cell State
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add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft it ot = �(W|
o[ht�1,xt])

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)xt

yt



Output Gate

Cell State

78

add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft it ot = �(W|
o[ht�1,xt])

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output

yt = �(W|
yht)xt

yt



Output Gate

Cell State
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add trainable memory to the network

Long Short-Term Memory (LSTM)

Input Gate

Forget Gate

Hidden State

it = �(W|
i [ht�1,xt])

ft = �(W|
f [ht�1,xt])

ot = �(W|
o[ht�1,xt])

ht = ot � tanh(ct)

read from and write to “cell” state

ft it ot

ht�1

ct�1 ct

ht

ct = ft � ct�1 + it � tanh(W|
c [ht�1,xt])

Output
yt = �(W|

yht)xt

yt
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memory networks

Gated Recurrent Unit (GRU)  
Cho et al., 2014

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Hopfield Network 
Hopfield, 1982

Neural Turing Machine (NTM) 
Graves et al., 2014

Differentiable Neural Computer (DNC) 
Graves, Wayne, et al., 2016

Memory Networks (MemNN) 
Weston et al., 2015
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tons of options!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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deep recurrent neural networks
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auto-regressive generative modeling

output becomes next input
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auto-regressive generative language modeling

http://karpathy.github.io/2015/05/21/rnn-effectiveness/



85

Pixel RNN uses recurrent networks to perform 
auto-regressive image generation

condition the generation of each pixel on a sequence of past pixels

context
generated samples

van den Oord et al., 2016



R E C A P
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we used additional priors (inductive biases) to 
scale deep networks up to handle spatial and sequential data

recapitulation

without these priors, we would need 
more parameters and data
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we live in a spatiotemporal world

we are constantly getting streams of spatial sensory inputs

(embodied) intelligent machines need to learn from 
spatial and temporal patterns

Berkeley AI Research
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CNNs and RNNs are building blocks for 
machines that can use spatiotemporal data to solve tasks

Jaderberg, Minh, Czarnecki et al., 2016



90 Jaderberg, Minh, Czarnecki et al., 2016
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