DEEP PROBABILISTIC MODELS
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DEEP PROBABILISTIC MODELS
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implemented using expressed using an approximation of a
deep neural networks probability & statistics real phenomenon



convolutional neural networks for classification
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convolutional models for image generation
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modeling the data distribution

\_

Pdata(X)
data: Pdata(X) Pa o ];cef(jcz?data(x)
model: pg(X)
ameters:
X

\_

maximum likelihood estimation

find the model that assigns the maximum likelihood to the data

9*

— arg mein DKL(pdata(X)Hpe(X))

= argmin E,,,., () [108 Paata(x) — log py ()

= argmax E, log pg(x

¢ Zlnge )
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autoregressive
models




conditional probability distributions
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a data example

number of features

p(X) :p($17x27 I 7$M)



Kchain rule of probability

split the joint distribution into a product of conditional distributions

1 X2 I3

p(X) —p(ﬂcl,azg, ces ,fEM)

. p(a,b) . definition of
p(alb) = p(b) > p(a, b> - p(a\b)p(b) conditional probability

recursively apply to p(x1,Z2,..., T ):

p(z1, %2, ..., ) = p(x1)p(T2, - . ., Tas|T1)

P(afl)p(xz\%) .. -p(ﬂUM\SBh “e ,ZUM—l)

M
p(Z1,- .-, Tm) = Hp(xj|$1, coy Tjo1)
j=1

K note: conditioning order is arbitrary




model the conditional distributions of the data

learn to auto-regress each value
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model the conditional distributions of the data

learn to auto-regress each value

p6(331)
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model the conditional distributions of the data

learn to auto-regress each value

pe(ﬂ?Q\ZL’l)
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model the conditional distributions of the data

learn to auto-regress each value

pe(ws\ﬂ?l, 5132)
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model the conditional distributions of the data

learn to auto-regress each value

Po 2134!561,332,%3
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model the conditional distributions of the data

learn to auto-regress each value

Peo (33M ’X<M)
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maximum likelihood estimation

maximize the log-likelihood (under the model) of the true data examples

0*= arg m@aX Epyaia(x) llog pg (x Z log pe(x

ﬁor auto-regressive models:

log po(x) = log Hp0($j‘x<j)
j=1

M
=) logpy(x;|x<;)

K j=1

9*—argmax—2210gp9 ())

1=1 7=1



models

can parameterize conditional distributions using a recurrent neural network

pe(xl) p9($2\$1) P9($3|X<3) p9(334’X<4) P9($5\X<5) P0($6\X<6) p0($7\X<7)

see Deep Learning (Chapter 10), Goodfellow et al., 2016
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models

can parameterize conditional distributions using a recurrent neural network

P9($5\X<5)

see Deep Learning (Chapter 10), Goodfellow et al., 2016
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models

can condition on a local window using convolutional neural networks

pe 5131 $2\$1 Do $3|X12 Do 5134!X13 Do $5’X24 Do «736|X35 Do $7\X46

iy
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models

can condition on a local window using convolutional neural networks

109(5135!3(2:4)
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sampling

sample from the model by drawing from the output distribution

po(z1)  po(x2|r1) po(zs|x<s) po(Ta|X<a) po(Ts|x<s) Po(x6|x<s) Po(27|X<7)
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Pixel Recurrent Neural Networks, van den QOord et al., 2016
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WaveNet: A Generative Model for Raw Audio, van den Oord et al., 2016
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M PROMPT A train carriage containing controlled nuclear materials was stolen in
-WRITTEN)

Cincinnati today. Its whereabouts are unknown.

MODEL COMPLETION The incident occurred on the downtown train line, which runs from
(MACHINE-WRITTEN,  Covington and Ashland stations.
FIRST TRY)
In an email to Ohio news outlets, the U.S. Department of Energy
said it is working with the Federal Railroad Administration to
find the thief.

“The theft of this nuclear material will have significant negative
consequences on public and environmental health, our workforce and
the economy of our nation,” said Tom Hicks, the U.S. Energy
Secretary, in a statement. “Our top priority is to secure the
theft and ensure it doesn’t happen again.”

The stolen material was taken from the University of Cincinnati’s
Research Triangle Park nuclear research site, according to a news
release from Department officials.

The Nuclear Regulatory Commission did not immediately release any
information.

According to the release, the U.S. Department of Energy’s Office
of Nuclear Material Safety and Security is leading that team’s
investigation.

“The safety of people, the environment and the nation’s nuclear
stockpile is our highest priority,” Hicks said. “We will get to
the bottom of this and make no excuses.

Attention is All You Need, Vaswani et al., 2017
Improving Language Understanding by Generative Pre-Training, Radford et al., 2018
Language Models as Unsupervised Multi-task Learners, Radford et al., 2019
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explicit
latent variable models




latent variables result in mixtures of distributions

pA

approach 1
directly fit a distribution to the data

po(z) = N(z; 1, 0%)

>

approach 2 \
use a latent variable to model the data

Po(,2) = po(x|2)pe(2) = N (; pa(2), 02 (2))B(2; 1)
po(z) = pol, 2)
— &'N(Qﬁ;uw(l),gi(l))‘F(l — ,LLz) 'N(ZC;,LL:E(O),O'?C(O)) J

— S —

S~

mixture component mixture component




directed latent variable model

Generation

GENERATIVE MODEL

p(x,z) = p(x|z)p(z)

joint o prior
J conditional

likelihood

1. sample z from p(z)

2. use z samples to sample x from p(x|z)

2‘ object ~ p(objects)
L |ighting ~ p(lighting)
§ background ~ p(bg)




directed latent variable model

Posterior Inference

v

INFERENCE ( ) joint
P\ X, Z
p(z|x) = ——
9 | p(X) marginal
posterior likelihood

use Bayes' rule

provides conditional distribution
over latent variables

what is the probability that | am observing a cat
given these pixel observations? .

p( ﬁ/ |cat) p(cat)

o)

p(cat |ﬁ/) =



v

0

directed latent variable model

Model Evaluation

MARGINALIZATION
marginal p(X) — p()(7 Z)dZ
likelihood .
joint

to evaluate the likelihood of an observation,

we need to marginalize over all latent variables

i.e. consider all possible underlying states

. intuitive example

~ A _

how likely is this observation under my model?

(what is the probability of observing this?)

for all objects, lighting, backgrounds, etc.:
how plausible is this example?



maximum likelihood estimation

maximize the log-likelihood (under the model) of the true data examples

0*= arg max Epyoea (x) 108 Po(x Z log pp(x
ﬁor latent variable models: \
discrete continuous
log ps(x) = log ZP@ X, 7) or log pg(x) = 10g/P9(X,Z)dZ

\_ J

marginalizing is often intractable in practice




r variational inference

lower bound thellogHlikelihood.by introducing anl approximate posteror
introduce an approximate posterior g(z|x)
log po(x) = L(x) + D r(q(z|x)[pe(z|x))
where L£(X) = Ey(z)x) [log pe(x,z) — log q(z]x)]

D, >0 —» E(X) < logpg(X) (lower bound)

variational expectation maximization (EM)
E-Step: optimize L(x) w.rt. q(z|X)

M-Step: optimize L(x) w.r.t.

the E-Step indirectly minimizes D 1. (q(z|x)||ps(2z|x))




interpreting the lower bound

@can write the lower bound as

L= IEerq(z|x) :Ing(X, Z) o log Q(Z|X)]

N——"

— IEEZNq(z|x) lng X|Z p(Z) T lOg Q(Z’X)]

(
= Esnq(zlx) 10g p(x|2) + log p(z) — log q(z|x)]
— IEj’z~q(z|x) 1ng(x Z)] R DKL (Q(Z‘X)HP(Z»

| S N _J
—— —r

K reconstruction regularization

q(z|x) is optimized to represent the data while staying close to the prior

connections to compression, information theory



variational autoencoder (VAE)

variational expectation maximization (EM)
E-Step: optimize L(x) w.r.t. ¢(z|x)

M-Step: optimize L(x) w.r.t.

use a separate inference model to directly output approximate posterior estimates

p(z)

inference generative

X+——»| model 7Zl— model |——

p(x|z)

q(z|x)

learn both models jointly using stochastic backpropagation

reparametrization trick: Z = (b + O () € €~ N(O, I)

Autoencoding Variational Bayes, Kingma & Welling, 2014
Stochastic Backpropagation, Rezende et al., 2014



sequential latent variable models

can use the same techniques to train
sequential latent variable models

some examples:

e

O

A Recurrent Latent Variable Model for Deep Variational Bayes Filters: Unsupervised Learning

Sequential Data, Chung et al., 2015 of State Space Models from Raw Data, Karl et al., 2016

33



discrete latent variable models

with discrete latent variables, cannot easily backprop through sampling z

Helmholtz Machine / Wake-Sleep REINFORCE Gradients Relaxed Distributions
generative
1 biases
ayer ' W Generative Model ~ Encoder ~ Autoencoder Training .
Y Y "é (Decoder) (cost: description length) 5 Categorical T=0.1 T=0.5 7=1.0 7= 10.0
enerates
3 e e, values

H, eeeeee oeceee oococee (DARN

l T, T'l roraia) |.-l_.L \.nl_.L Ll_-L L.I-L ——
' 77X Generates
H1 (XXX XX} (I X XXX J (XL XXX J *values ‘ l ‘ l ‘ l

N W WO 4 (inference) ‘ I

/\l T T/\l ‘ Predicts = e

expectation

sample

category

X eoeoeooo0o (X XXX Y] (YYYYY) values

Dayan et al., 1995 Gregor et al.,, 2014 Jang et al.,, 2017
Mnih & Gregor, 2014 Maddison et al., 2017
Combinations
JLax _ 9reForcelf] ~ JREINFORCE|o] Jreparam|C2]

L - A - . J [ a - - a. - )
3-2-10 1 2 3 Ji=2'=1 0 1 23 ni=2:=1 0:'1 "2 =3 3-2-10 1 2 3
unbiased unbiased biased biased

low variance high variance high variance low variance

Tucker et al., 2017
Grathwohl et al., 2018
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representation learning

latent variables provide a natural representation for downstream tasks

beta-VAE
A B-VAE ,
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invertible / flow-based

models



change of variables

use an invertible mapping to directly evaluate the log likelihood

ﬁimple example

pz(2) A
1 -
- >
B P
px(z)A
1--
0.5 + .
Y : 4 >
T
1 9 3

px(z)dr = pz(2)dz
dz

dx

K conservation of probability mass

px(z) = pz(2)

sample z from a base distribution

z ~ pz(z) = Uniform(0, 1)

apply a transform to z to get a transformed distribution

r=f(z) =2z+1

dx
— >0
dz
dx
i t
4
2z —
dz

~

Normalizing Flows Tutorial, Eric Jang, 2018



change of variables

f(2)
base transformed
1)

distribution distribution

J(f_1 (x)) is the Jacobian matrix of the inverse transform

det J(f~1(x)) is the local distortion in volume from the transform

38



change of variables

transform the data into a space that is easier to model

latent data

F(x) f % i

== PR
O

R

Density Estimation Using Real NVP, Dinh et al., 2016



maximum likelihood estimation

maximize the log-likelihood (under the model) of the true data examples

N
* 1 1
0" = argmax B, (x) [logps(x)] ~ N;bgpe(x())

\_

ﬂ)r invertible latent variable models:

log pg(x) = log pg(z) + log |det J(fy ' (x))]

~

J

1 N

* s (2) —1 (%)
0" = arg max — Z [logpg(z )+ log |det J(f, " (x ))H

1=1



change of variables

to use the change of variables formula, we need to evaluate det J(f~'(x))

for an arbitrary N x N Jacobian matrix, this is worst case O(N?)

restrict the transforms to those with diagonal or triangular inverse Jacobians

allows us to compute det J(f~'(x)) in O(N)

— product of diagonal entries

47



masked autoregressive flow (MAF)

TRANSFORM INVERSE TRANSFORM

base distribution base distribution

H®®® OO

transformed distribution transformed distribution

T4 — a4(X71:3)
by(X1.3)

T4 = aq(X1.3) + ba(X1.3) - 24 24 =

Masked Autoregressive Flow, Papamakarios et al., 2017
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normalizing flows (NF)

can also use the change of variables formula for variational inference

parameterize ¢(z|X) as a transformed distribution

U . N P
o8 —85 J
Inference network Generative model

use more complex approximate posterior, but evaluate a simpler distribution

Normalizing Flows, Rezende & Mohamed, 2015



Glow

use 1 x 1 convolutions to perform transform

¥

step of flow x K

f

squeeze

A

split

f

step of flow x: K x (L—1)

f

squeeze

1

®

Glow, Kingma & Dhariwal, 2018
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implicit
latent variable models




instead of using an explicit probability density,
learn a model that defines an implicit density

pdata(x)
po(x)

Y

specify a stochastic procedure for generating the data

that does not require an explicit likelihood evaluation

Learning in Implicit Generative Models, Mohamed & Lakshminarayanan, 2016



pdata(x)
po(x)

%Y

estimate density ratio through hypothesis testing

data distribution pgata(X) generated distribution pg(x)

Paata(X) _ p(x|y = data)
po(x) p(x|y = model)

Pdata (X) _ p(y = data|x)p(x)/p(y = data)
Po (%) p(y = model|x)p(x)/p(y = model)

(Bayes' rule)

Pdata (X) _ p(y = data|x)
po(x)  p(y = model|x)

(assuming equal dist. prob.)

density estimation becomes a sample discrimination task



Generative Adversarial Networks (GANSs)

Generator

) o
2~ vla) = Gl@) = x ~ ol
=
~
[ X~ pdata(x)
W,

Data

Generator: G(z)
Discriminator:  D(x) = p(y = data|x) = 1 — p(y = model|x)

Log-Likelihood: K, .. (x) logp(y = data|x)] + E,, (x) [log p(y = model|x)]

— Epdata(x) [logD(x)] + Epe (x) [log(l o ( ))]
By 08 D] + Epgey llog(1 — D(G(z))]

lan Goodfellow, 2016
48 Shakir Mohamed, 2016



L

e

N

X1

data manifold

Interpretation

X2

.
-
/
jS

N
-
—
)
1

A\

explicit model implicit model

explicit models tend to cover the entire data manifold, but are

constrained

implicit models tend to capture part of the data manifold,

but can neglect other parts

— “mode collapse”

49 Aaron Courville



Generative Adversarial Networks (GANSs)

GANSs can be difficult to optimize

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Baseline (G: DCGAN, D: DCGAN)

G: No BN and a constant number of filters, D DCGAN

No normalization in either G or D

E: Es (B &

Gated multlphcatlve nonlmearmes everywhere inGG and D

tanh nonlinearities everywhere in G and D

AT

101-layer ResNet G and D

Improved Training of Wasserstein GANs, Gulrajani et al., 2017
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applications

image to image translation

erial to Map v

swfﬁin
T s

%%
W 7 8
input output i\ B
\.~7 — ‘ ~

Image-to-Image Translation with Conditional

Adversarial Networks, Isola et al., 2016

interpretable representations
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InfoGAN: Interpretable Representation
Learning by Information Maximizing Generative
Adversarial Nets, Chen et al., 2016

|I'\|'ll L Ground truth Output
Labels to Street Scene
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\ 3
input output
~ N\

A

Zebras 7_ Horses

zebra —) horse

@ horse —» zebra

Unpaired Image-to-Image Translation using Cycle-

experimental simulation
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[Transformed) Pseudorapidity ()

Learning Particle Physics by

Consistent Adversarial Networks, Zhu et al., 2017 Example, de Oliveira et al., 2017

music synthesis
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(b) MidiNet model 2

n-‘»ﬁimu Trw

(¢) MidiNet model 3

MIDINET: A CONVOLUTIONAL
GENERATIVE ADVERSARIAL
NETWORK FOR SYMBOLIC-
DOMAIN MUSIC GENERATION,

Yang et al., 2017

o1

text to image synthesis

A small bird A small yellow  This small bird
The bird is A bird with a This small with varying bird with a has a white
This birdisred  short and medium orange  black bird has shades of black crown breast, light
and brown in stubby with bill white body  a short, slightly ~ brown with and a short grey head, and
color, with a yellow on its gray wingsand  curved billand  white underthe  black pointed black wings

stubby h¢. k body webbed feet long lcb

eyes beak and tail

StackGAN: Text to Photo-realistic Image Synthesis
with Stacked Generative Adversarial Networks,
Zhang et al., 2016
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2014

2018

arxiv.org/abs/1406.2661
arxiv.org/abs/1511.06434
arxiv.org/abs/1606.07536
arxiv.org/abs/1710.10196
52 arxiv.org/abs/1812.04948
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energy-based
models



energy-based models

express a normalized distribution in terms of an unnormalized distribution

1

p(x) = Eﬁ(x)

(partition function) / = /ﬁ(X)dX

energy-based models (or Boltzmann machines) define the unnormalized density as

p(x) = exp(—E(x))

E(X) is an energy function

this is a special case of an undirected graphical model C@

Deep Learning (Chapter 16), Goodfellow et al., 2016



restricted Boltzmnann machines (RBMs)

f structure \
restricted Boltzmann machines consist of visible (observed) units v and hidden (latent) units h

connections are restricted to a bipartite graph:

the restricted graph structure allows us to express

K p(h|v) = ][ p(hilv) p(vih) = ] [ p(v;Ih) J

@ J

K functional form \
define the energy function as

E(v,h)=—-bTv —c™h — vTWh

Qhere b,c, W are learnable parameters

\_

Deep Learning (Chapter 16), Goodfellow et al., 2016



restricted Boltzmnann machines (RBMs)

training N

the linear energy function, E(v,h) = —bTv — c¢Th — vIWh, has simple derivatives, e.g.

0

E(V, h) = —Vihj

can use of a variety of sampling-based training algorithms (see Chapter 18 of Goodfellow et al.)

—— contrastive divergence, stochastic maximum likelihood, score matching

b based on estimating V log pg(x) through sampling J

sampling é
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Deep Learning (Chapters 16, 18), Goodfellow et al., 2016



deep energy-based models

chine

Ma

Restricted Boltzmann

Deep Belief Network

Deep Boltzmann

ing (Chapter 20), Goodfellow et al., 2016

ep Learn



other topics



Generative Model Evaluation, Generative Models + RL
Training Criteria

.
action
VAE (V)
PEIRN )
observation I T
C
MDN-RNN (M)
Theis et al., 2016 L
world model action

Ha & Schmidhuber, 2018

Causal Models Combinations of Models

qlz|x)

X z~ q(z)

/ 1/

Draw samples Adversarial cost
from p(z)

+ for distinguishing
Input - QAR i les
positive samples p(z)
from negative samples ¢(z)

Makhzani et al., 2016

Louizos et al., 2017

59









