CS 159: Lecture 2

Maximum likelihood inference & latent variable models

Presentation guidelines

- Detailed guidelines on course website.
- In short: groups will present papers, being sure to:
 - Explain the approach, giving a concrete toy example
 - Place the work in context—how does it relate to other papers?
 - Describe and critically evaluate the claims of the papers
 - (Optional) walk the class through a simple implementation of the method.

Structure of the lecture

- Reminder of the maximum likelihood framework
- The simplest example: how PCA fits into this framework
- Adding more structure: latent variable models
- Gaussian mixture models and the EM algorithm
- Joe: the big picture, and more modeling assumptions

Probabilistic modeling

- Given a dataset $X = \{x_1, x_2, \dots, x_n\}$
- Wish to fit a probabilistic model $p_{\theta}(x)$
- E.g. for a Gaussian model, $\theta = \{\mu, \sigma^2\}$

Maximum likelihood

• A standard way to do this is to fit the parameters θ via maximizing the log likelihood of the observed data under the model: n

$$\theta^* = \max_{\theta} \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

• Contrast this to a full Bayesian approach which would attempt to assign a probability to every possible θ

Reminder

• As discussed last lecture, maximizing likelihood is related to minimizing the KL divergence between the model and the data distribution, since

$$\min_{\theta} \text{KL}(p \mid \mid p_{\theta}) = \min_{\theta} \sum_{x} (p \log p - p \log p_{\theta})$$
$$\approx \max_{\theta} \sum_{i=1}^{n} \log p_{\theta}(x_{i})$$
$$= \max_{\theta} \log \prod_{i=1}^{n} p_{\theta}(x_{i})$$

• Where the product reflects that the generating process is iid

- Note that we can define a probabilistic model that just samples uniformly from the dataset
- The "parameters" θ of this "model" are just memorizing the data $\theta=X$
- This will lead trivially to the max possible log likelihood
- But the "model" will be useless

- The previous example demonstrates that the essence of probabilistic modeling via maximum likelihood is to choose a model class of the right complexity
- It should model meaningful structure and not just memorize spurious structure
- It should be tractable to optimize
- Neural nets fit this description; in this lecture we'll go into greater depth on some more classical methods

PCA

- Principal component analysis
- Dimensionality reduction technique
- Operates on a dataset $X = \{x_1, x_2, \dots, x_n\}$

The PCA algorithm

- Stack data into a matrix
- Center the data (subtract mean)

$$\tilde{X} = \begin{bmatrix} x_1 - \bar{x} \rightarrow \\ x_2 - \bar{x} \rightarrow \\ \vdots \\ x_n - \bar{x} \rightarrow \end{bmatrix}$$

- Diagonalise $ilde{X} ilde{X}^T$ into orthonormal system VDV^T
- Project the data on to the top k eigenvectors of V

Interpreting PCA

- PCA can be seen through the lens of maximum likelihood estimation
- We model the data matrix X as n samples from a multivariate Gaussian
- Check: the maximum likelihood estimator of the covariance is $\tilde{X}\tilde{X}^T$
- After "learning" this model, we can use it to perform dimensionality reduction.

When will PCA fail?

Interlude: latent variables

• One way to go beyond Gaussian models and PCA is the idea of latent variables

 Some unobserved variable that adds structure to the data generating process

Taking advantage of latent variables

• Model the data generating process as

$$p(x | \theta) = \sum_{z} p(x | \theta, z) p(z)$$

Mixture of Gaussians

GENERAL FORM:

probabilistic model:
$$p_{\theta}(\mathbf{x}, \mathbf{z})$$

latent variables: $\mathbf{z} \sim p(\mathbf{z})$ where $p(\mathbf{z}) = \prod_{i} p(\mathbf{z}_{i})$
marginalize: $p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} [p_{\theta}(\mathbf{x}|\mathbf{z})]$
linear transformation: $\mathbf{x} = \mathbf{W}\mathbf{z} + \mathbf{b} + \text{noise}$
where noise is typically Gaussian and diagonal.

LINEAR GAUSSIAN SYSTEM:

prior:

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{z}})$$

conditional likelihood:

$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; \mathbf{W}\mathbf{z} + \mathbf{b}, \mathbf{\Sigma}_{\mathbf{x}})$$

Bayes' Rule:

 \mathbf{Z}

 \mathbf{X}

general form:
$$\mathbf{x} = \mathbf{W}\mathbf{z} + \mathbf{b} + \text{noise}$$

FACTOR ANALYSIS:

standard Gaussian prior: $\mathbf{z} \sim \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$

 \mathbf{x}_i are assumed conditionally independent given \mathbf{z}

noise $\sim \mathcal{N}(\mathbf{0}, \boldsymbol{\psi})$

where
$$\boldsymbol{\psi} = \mathrm{diag}(\boldsymbol{\sigma}^2)$$
 with $\boldsymbol{\sigma}^2 = \left[\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2\right]^{\mathsf{T}}$

in this case,

$$p_{\theta}(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \mathbf{b}, \mathbf{W}\mathbf{W}^{\mathsf{T}} + \boldsymbol{\psi})$$

general form:
$$\mathbf{x} = \mathbf{W}\mathbf{z} + \mathbf{b} + \text{noise}$$

PROBABILISTIC PCA:

standard Gaussian prior: $\mathbf{z} \sim \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$

 x_i are assumed conditionally independent given z

noise ~
$$\mathcal{N}(\mathbf{0}, \boldsymbol{\psi})$$

where $\boldsymbol{\psi} = \operatorname{diag}(\boldsymbol{\sigma}^2)$ with $\boldsymbol{\sigma}^2 = [\sigma^2, \sigma^2, \dots, \sigma^2]^{\mathsf{T}}$

NC(O I)

in this case,

$$p_{\theta}(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \mathbf{b}, \mathbf{W}\mathbf{W}^{\mathsf{T}} + \sigma^{2}\mathbf{I})$$

as $\sigma \to 0$ we recover PCA

Goodfellow *et al.*, 2016, Chapter 13 Tipping & Bishop, 1999

general form:
$$\mathbf{x} = \mathbf{W}\mathbf{z} + \mathbf{b} + \text{noise}$$

INDEPENDENT COMPONENTS ANALYSIS (ICA):

general form:
$$\mathbf{x} = \mathbf{W}\mathbf{z} + \mathbf{b} + \text{noise}$$

SPARSE CODING:

sparse prior, e.g. Laplace, Cauchy, etc.:

$$p(\mathbf{z}_i) = \text{Laplace}(\mathbf{z}_i; 0, \frac{2}{\lambda}) = \frac{\lambda}{4} e^{-\frac{1}{2}\lambda|\mathbf{z}_i|}$$

 \mathbf{x}_i are assumed conditionally independent given \mathbf{z}

noise ~
$$\mathcal{N}(\mathbf{0}, \boldsymbol{\psi})$$

where $\boldsymbol{\psi} = \operatorname{diag}(\boldsymbol{\sigma}^2)$ with $\boldsymbol{\sigma}^2 = [\sigma^2, \sigma^2, \dots, \sigma^2]^{\mathsf{T}}$
 $p_{\theta}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; \mathbf{W}\mathbf{z} + \mathbf{b}, \sigma\mathbf{I})$

train using approximate inference techniques

Goodfellow et al., 2016, Chapter 13 Olshausen & Field, 1996

dynamical linear factor models

extend linear Gaussian models to the dynamical setting

LINEAR GAUSSIAN STATE SPACE MODEL (LG-SSM):

$$\begin{array}{ll} \text{transition model:} \ \mathbf{z}_t = \mathbf{A}_t \mathbf{z}_{t-1} + \mathbf{b}_t + \boldsymbol{\epsilon}_t & \textit{where} \ \boldsymbol{\epsilon}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_t) \\\\ \text{observation model:} \ \mathbf{x}_t = \mathbf{C}_t \mathbf{z}_t + \mathbf{d}_t + \boldsymbol{\delta}_t & \textit{where} \ \boldsymbol{\delta}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_t) \end{array}$$

Kalman filtering

LG-SSM: $\mathbf{z}_t = \mathbf{A}_t \mathbf{z}_{t-1} + \mathbf{b}_t + \boldsymbol{\epsilon}_t$ where $\boldsymbol{\epsilon}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_t)$ $\mathbf{x}_t = \mathbf{C}_t \mathbf{z}_t + \mathbf{d}_t + \boldsymbol{\delta}_t$ where $\boldsymbol{\delta}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_t)$

performing exact filtering inference: $p(\mathbf{z}_t | \mathbf{x}_{1:t})$

prediction

assume we know
$$p(\mathbf{z}_t - 1 | \mathbf{x}_{1:t-1}) = \mathcal{N}(\mathbf{z}_{t-1}; \boldsymbol{\mu}_{t-1}, \boldsymbol{\Sigma}_{t-1})$$

$$p(\mathbf{z}_{t}|\mathbf{x}_{1:t-1}) = \int p(\mathbf{z}_{t}|\mathbf{z}_{t-1}) p(\mathbf{z}_{t-1}|\mathbf{x}_{1:t-1}) d\mathbf{z}_{t-1}$$
$$= \int \mathcal{N}(\mathbf{z}_{t}; \mathbf{A}_{t}\mathbf{z}_{t-1} + \mathbf{b}_{t}, \mathbf{Q}_{1}) \mathcal{N}(\mathbf{z}_{t-1}; \boldsymbol{\mu}_{t-1}, \boldsymbol{\Sigma}_{t-1}) d\mathbf{z}_{t-1}$$
$$= \mathcal{N}(\mathbf{z}_{t}; \mathbf{A}_{t}\boldsymbol{\mu}_{t-1} + \mathbf{b}_{t}, \mathbf{A}_{t}\boldsymbol{\Sigma}_{t-1}\mathbf{A}_{t}^{\mathsf{T}} + \mathbf{Q}_{t})$$
$$= \mathcal{N}(\mathbf{z}_{t}; \boldsymbol{\mu}_{t|t-1}, \boldsymbol{\Sigma}_{t|t-1})$$

Kalman filtering

intractabilities

in simple models, exact inference and marginalization depend on linear Gaussian assumptions

this allowed us to evaluate analytical forms for $p(\mathbf{z}|\mathbf{x})$ and $p(\mathbf{x})$

however, these assumptions limit the model capacity

Ø	Ø,	₿	\$	J	G	9	Ŷ	9	2
¥	8	19	5	Ŧ	Ż	3		Ð	家
¥	9	3	3	9	3	Ŧ	SK.	a	\$
T.	В	Ś	ð	G.	R	S	X	đ,	Ś
4	9	×	A	Ì	$\langle g \rangle$	ŷ	6.0	4	۶
9	\mathcal{O}	đþ	Ġ2	3	5	Ð	Ŕ	Ø	B
\$	£	G	Ĩ	s	Ş	3	3	Ş.	St.
3	H	\$	92	Ľ,	S	83	ß	θ£	2
ø	3	B	Ð	¢	\$	4	5	(J	Ĩ
ŝ;	${}^{\!$	6	Ş	I.	÷.	Ş	2	8	1

to improve flexibility, allow p(z) and p(x|z) to be non-Gaussian and/or have non-linear dependencies

DEEP LATENT GAUSSIAN MODEL:

prior:

 $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$

conditional likelihood:

$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{\theta}(\mathbf{z}), \boldsymbol{\Sigma}_{\theta}(\mathbf{z}))$$

where $oldsymbol{\mu}_{ heta}(\mathbf{z})$ and $oldsymbol{\Sigma}_{ heta}(\mathbf{z})$ are deep networks

however, $p(\mathbf{z}|\mathbf{x})$ and $p(\mathbf{x})$ no longer have tractable analytical forms due to the non-linear deep networks

cannot tractably evaluate
$$p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$

= $\int \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{\theta}(\mathbf{z}), \boldsymbol{\Sigma}_{\theta}(\mathbf{z}))\mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})d\mathbf{z}$

Kingma & Welling, 2014 Rezende et al., 2014

DEEP LATENT GAUSSIAN MODEL:

prior: $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$

conditional likelihood:

$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{\theta}(\mathbf{z}), \boldsymbol{\Sigma}_{\theta}(\mathbf{z}))$$

```
where oldsymbol{\mu}_{	heta}(\mathbf{z}) and oldsymbol{\Sigma}_{	heta}(\mathbf{z}) are deep networks
```

must resort to approximate inference methods

Variational Inference:

introduce approximate posterior, e.g.: $q(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{z}})$

variational lower bound: $\log p(\mathbf{x}) \geq \mathcal{L}$

optimize $\mathcal L$ w.r.t. q and heta

Variational Autoencoder (VAE):

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\Sigma}_{\phi}(\mathbf{x}))$$

where $oldsymbol{\mu}_{\phi}(\mathbf{x})$ and $oldsymbol{\Sigma}_{\phi}(\mathbf{x})$ are deep networks

how does variational inference relate to exact inference in latent Gaussian models?

for a simplified linear Gaussian model + exact inference:

for a deep Gaussian model + variational inference:

```
prior: p(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})

conditional likelihood: p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{\theta}(\mathbf{z}), \boldsymbol{\Sigma}_{\theta}(\mathbf{z}))

approximate posterior: q(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{z}})

maximize \mathcal{L} w.r.t. \boldsymbol{\mu}_{\mathbf{z}}

\longrightarrow \nabla_{\boldsymbol{\mu}_{\mathbf{z}}} \mathcal{L} = \mathbb{E} [\mathbf{D}(\mathbf{x} - \boldsymbol{\mu}_{\theta}(\mathbf{z})) + \mathbf{F}]
```

similar terms appear in both inference approaches

can also use gradients in an encoder network

$$oldsymbol{\lambda} = \{oldsymbol{\mu}_{\mathbf{z}}, oldsymbol{\Sigma}_{\mathbf{z}}\}$$

can also use gradients in an encoder network

next time: deeper dive into latent variable models + variational inference