
CS 159: Lecture 2
Maximum likelihood inference


& latent variable models



Presentation guidelines
• Detailed guidelines on course website.


• In short: groups will present papers, being sure to:


• Explain the approach, giving a concrete toy example


• Place the work in context—how does it relate to other 
papers?


• Describe and critically evaluate the claims of the papers


• (Optional) walk the class through a simple implementation 
of the method.



Structure of the lecture

• Reminder of the maximum likelihood framework


• The simplest example: how PCA fits into this framework


• Adding more structure: latent variable models


• Gaussian mixture models and the EM algorithm


• Joe: the big picture, and more modeling assumptions



Probabilistic modeling

• Given a dataset


• Wish to fit a probabilistic model


• E.g. for a Gaussian model, 

X = {x1, x2, ⋯, xn}

pθ(x)
θ = {μ, σ2}



Maximum likelihood

• A standard way to do this is to fit the parameters        via 
maximizing the log likelihood of the observed data under 
the model:


• Contrast this to a full Bayesian approach which would 
attempt to assign a probability to every possible   

θ

θ* = max
θ

n

∑
i=1

log pθ(xi)

θ



Reminder
• As discussed last lecture, maximizing likelihood is related 

to minimizing the KL divergence between the model and 
the data distribution, since

min
θ

KL(p | |pθ) = min
θ ∑

x

(p log p − p log pθ)

≈ max
θ

n

∑
i=1

log pθ(xi)

= max
θ

log
n

∏
i=1

pθ(xi)

• Where the product reflects that the generating process is iid



• Note that we can define a probabilistic model that just 
samples uniformly from the dataset


• The “parameters”         of this “model” are just 
memorizing the data


• This will lead trivially to the max possible log likelihood


• But the “model” will be useless

θ θ = X



• The previous example demonstrates that the essence of 
probabilistic modeling via maximum likelihood is to 
choose a model class of the right complexity


• It should model meaningful structure and not just 
memorize spurious structure


• It should be tractable to optimize


• Neural nets fit this description; in this lecture we’ll go into 
greater depth on some more classical methods



PCA

• Principal component 
analysis


• Dimensionality 
reduction technique


• Operates on a dataset 
X = {x1, x2, ⋯, xn}



The PCA algorithm

• Stack data into a matrix


• Center the data (subtract mean)


• Diagonalise               into orthonormal system 


• Project the data on to the top k eigenvectors of 

X̃ =

x1 − x̄ →
x2 − x̄ →

⋮
xn − x̄ →

X̃X̃T VDVT

V



Interpreting PCA
• PCA can be seen through the lens of maximum likelihood 

estimation


• We model the data matrix X as n samples from a 
multivariate Gaussian


• Check: the maximum likelihood estimator of the 
covariance is 


• After “learning” this model, we can use it to perform 
dimensionality reduction.

X̃X̃T



When will PCA fail?



Interlude: latent variables
• One way to go beyond Gaussian models and PCA is the 

idea of latent variables


• Some unobserved variable that adds structure to the data 
generating process



Taking advantage of latent 
variables

• Model the data generating process as

p(x |θ) = ∑
z

p(x |θ, z)p(z)

Z X



Mixture of Gaussians



linear factor models



linear factor models
GENERAL FORM:

p✓(x) =

Z
p✓(x, z)dz = Ez⇠p(z) [p✓(x|z)]marginalize:

probabilistic model: p✓(x, z)

latent variables: z ⇠ p(z) p(z) =
Y

i

p(zi)where

linear transformation: x = Wz+ b+ noise

wherex = Wz+ b+ noise is typically Gaussian and diagonal.

x1 x2 x3

z1 z2 z3

Goodfellow et al., 2016, Chapter 13



LINEAR GAUSSIAN SYSTEM:

Murphy, 2012, Chapter 4

p(z) = N (z;µz,⌃z)

p(x|z) = N (x;Wz+ b,⌃x)

prior:

conditional 
likelihood:

z

x

Bayes’ Rule:

Marginalization:

p(x) = N (x;Wµz + b,⌃x +W⌃zW
|)

p(z|x) = N (z;µz|x,⌃z|x)posterior:

marginal 
likelihood:

µz|x = ⌃z|x
⇥
W|⌃�1

x (x� b) +⌃�1
z µz

⇤
⌃�1

z|x = ⌃�1
z +W|⌃�1

x W



linear factor models

FACTOR ANALYSIS:

standard Gaussian prior: z ⇠ N (z;0, I)

are assumed conditionally independent givenxi z

noise ⇠ N (0, )

where  = diag(�2) �2 =
⇥
�2
1 ,�

2
2 , . . . ,�

2
n

⇤|
with

in this case,

p✓(x) = N (x;b,WW| + )

Goodfellow et al., 2016, Chapter 13

x = Wz+ b+ noisegeneral form:



linear factor models

Goodfellow et al., 2016, Chapter 13

x = Wz+ b+ noisegeneral form:

PROBABILISTIC PCA:

standard Gaussian prior: z ⇠ N (z;0, I)

are assumed conditionally independent givenxi z

noise ⇠ N (0, )

in this case,

where  = diag(�2) with �2 =
⇥
�2,�2, . . . ,�2

⇤|

p✓(x) = N (x;b,WW| + �2I)

as � ! 0 we recover PCA

Tipping & Bishop, 1999



linear factor models

Goodfellow et al., 2016, Chapter 13

x = Wz+ b+ noisegeneral form:

INDEPENDENT COMPONENTS ANALYSIS (ICA):

independent prior

deterministically generatesz

train using the change of variables formula (see lecture 1)

x

noise = 0

x = Wz



linear factor models
x = Wz+ b+ noisegeneral form:

SPARSE CODING:

sparse prior, e.g. Laplace, Cauchy, etc.:

train using approximate inference techniques

Goodfellow et al., 2016, Chapter 13

p(zi) = Laplace(zi; 0,
2

�
) =

�

4
e�

1
2�|zi|

are assumed conditionally independent givenxi z

noise ⇠ N (0, )

where  = diag(�2) with �2 =
⇥
�2,�2, . . . ,�2

⇤|

Olshausen & Field, 1996

p✓(x|z) = N (x;Wz+ b,�I)



dynamical linear factor models

LINEAR GAUSSIAN STATE SPACE MODEL (LG-SSM):

Murphy, 2012, Chapter 18

extend linear Gaussian models to the dynamical setting

z1 z2 z3

x1 x2 x3

transition model: where ✏t ⇠ N (0,Qt)zt = Atzt�1 + bt + ✏t

observation model: xt = Ctzt + dt + �t where �t ⇠ N (0,Rt)



Kalman filtering

Murphy, 2012, Chapter 18

LG-SSM:
where ✏t ⇠ N (0,Qt)zt = Atzt�1 + bt + ✏t

xt = Ctzt + dt + �t where �t ⇠ N (0,Rt)

performing exact filtering inference: p(zt|x1:t)

prediction

assume we know p(zt � 1|x1:t�1) = N (zt�1;µt�1,⌃t�1)

p(zt|x1:t�1) =

Z
p(zt|zt�1)p(zt�1|x1:t�1)dzt�1

=

Z
N (zt;Atzt�1 + bt,Q1)N (zt�1;µt�1,⌃t�1)dzt�1

= N (zt;Atµt�1 + bt,At⌃t�1A
|
t +Qt)

= N (zt;µt|t�1,⌃t|t�1)



Kalman filtering

Murphy, 2012, Chapter 18

LG-SSM:
where ✏t ⇠ N (0,Qt)zt = Atzt�1 + bt + ✏t

xt = Ctzt + dt + �t where �t ⇠ N (0,Rt)

performing exact filtering inference: p(zt|x1:t)

update

Bayes’ rule: p(zt|x1:t) =
p(xt|zt)p(zt|x1:t�1)

p(xt|x1:t�1)
prediction

p(zt|x1:t) = N (zt;µt,⌃t)

where µt = µt|t�1 +Ktrt ⌃t = (I�KtCt)⌃t|t�1,

rt ⌘ xt � x̂tresidual:

= xt � (Ctµt|t�1 + dt)

Kalman gain: Kt



intractabilities



in simple models, exact inference and marginalization 
depend on linear Gaussian assumptions

p(z) = N (z;µz,⌃z)

p(x|z) = N (x;Wz+ b,⌃x)

prior:

conditional 
likelihood:

z

x

this allowed us to evaluate analytical forms for andp(z|x) p(x)

however, these assumptions limit the model capacity

Goodfellow et al., 2016, Chapter 13



to be non-Gaussian and/or have non-linear dependencies
to improve flexibility, allow andp(z) p(x|z)

DEEP LATENT GAUSSIAN MODEL:

Kingma & Welling, 2014
Rezende et al., 2014

p(z) = N (z;0, I)

p(x|z) = N (x;µ✓(z),⌃✓(z))

prior:

conditional 
likelihood:

where µ✓(z) ⌃✓(z)and are deep networks

however, p(z|x) p(x)and no longer have tractable analytical forms
due to the non-linear deep networks

cannot tractably evaluate p(x) =

Z
p(x|z)p(z)dz

=

Z
N (x;µ✓(z),⌃✓(z))N (z;0, I)dz



DEEP LATENT GAUSSIAN MODEL:

Kingma & Welling, 2014
Rezende et al., 2014

p(z) = N (z;0, I)

p(x|z) = N (x;µ✓(z),⌃✓(z))

prior:

conditional 
likelihood:

where µ✓(z) ⌃✓(z)and are deep networks

must resort to approximate inference methods

Variational Inference:

Variational Autoencoder (VAE):

introduce approximate posterior, e.g.: q(z|x) = N (z;µz,⌃z)

variational lower bound:

q�(z|x) = N (z;µ�(x),⌃�(x))

where and are deep networksµ�(x) ⌃�(x)

log p(x) � L

optimize L w.r.t. q ✓and



how does variational inference relate to exact inference

in latent Gaussian models?

for a simplified linear Gaussian model + exact inference:

p(z) = N (z;0, I)prior:

p(x|z) = N (x;Wz+ b,⌃x)
conditional 
likelihood:

posterior: p(z|x) = N (z;µz|x,⌃z|x)

can write µz|x = B(x� µx|z) where µx|z = Wz+ b

for a deep Gaussian model + variational inference:

p(z) = N (z;0, I)

p(x|z) = N (x;µ✓(z),⌃✓(z))

prior:

conditional 
likelihood:

approximate 
posterior: q(z|x) = N (z;µz,⌃z)

maximize µzL w.r.t.

rµzL = E [D(x� µ✓(z)) + F]

similar terms appear in both inference approaches



can also use gradients in an encoder network

� = {µz,⌃z}

Marino et al., Iterative amortized inference, 2018



can also use gradients in an encoder network

In
fe
re
n
ce
O
p
ti
m
iz
at
io
n

Model Steps
t t+ 1

Prior
Approx. Posterior
Cond. Likelihood
Observation

KL Divergence

Inference

Reconstruction
Error

Generative Model

Marino et al., A general method for amortizing variational filtering, 2018



next time: deeper dive into latent variable models + variational inference




