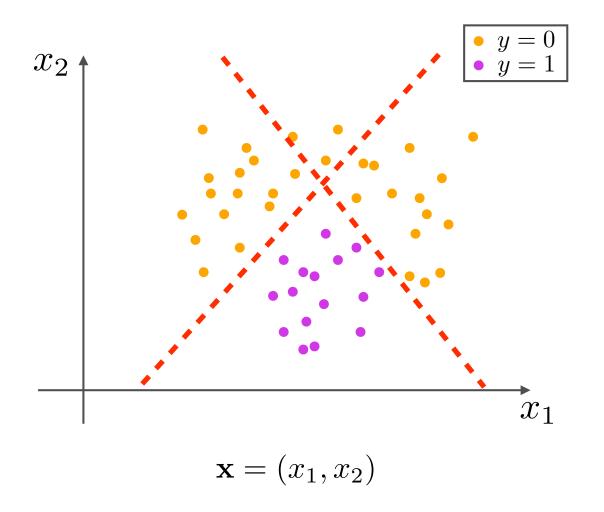
DEEP LEARNING

PART TWO - CONVOLUTIONAL & RECURRENT NETWORKS

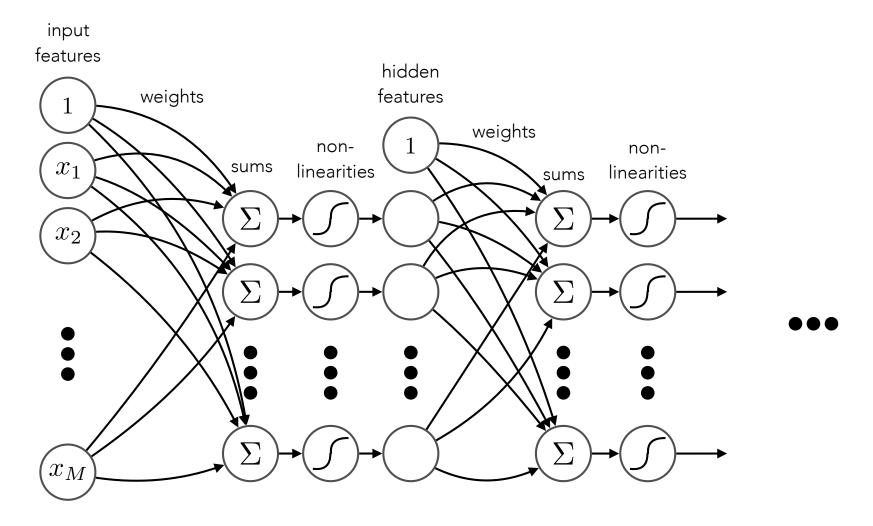
REVIEW

we want to learn **non-linear** decision boundaries



we can do this by composing linear decision boundaries

neural networks formalize a method for building these composed functions



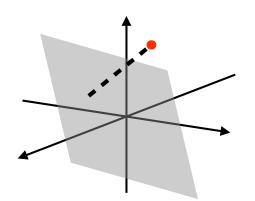
deep networks are universal function approximators

a geometric interpretation

the dot product is the shortest distance between a point and a plane

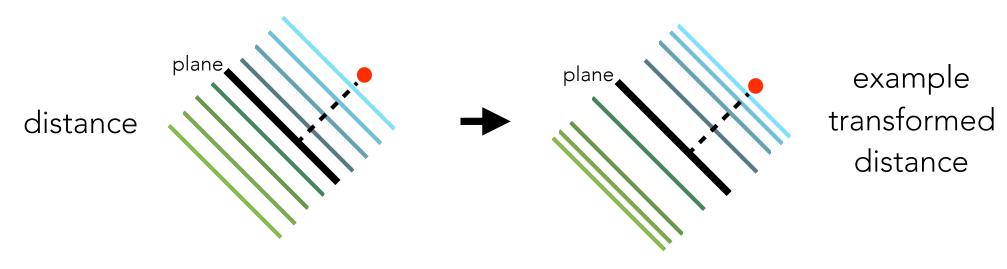
each artificial neuron defines a (hyper)plane:

$$0 = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_M x_M$$

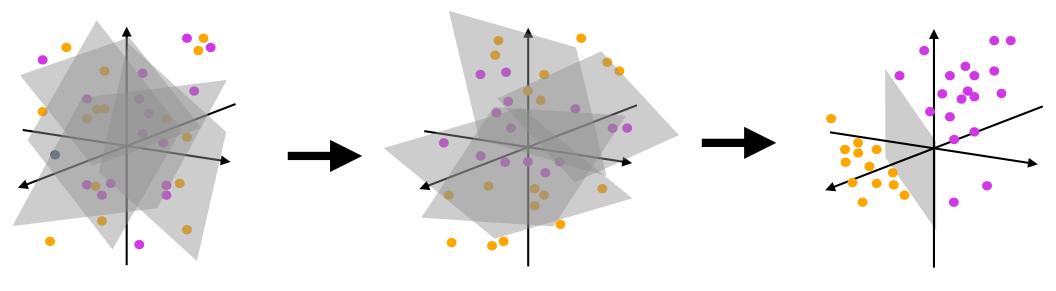


<u>summation</u>: distance from plane to input

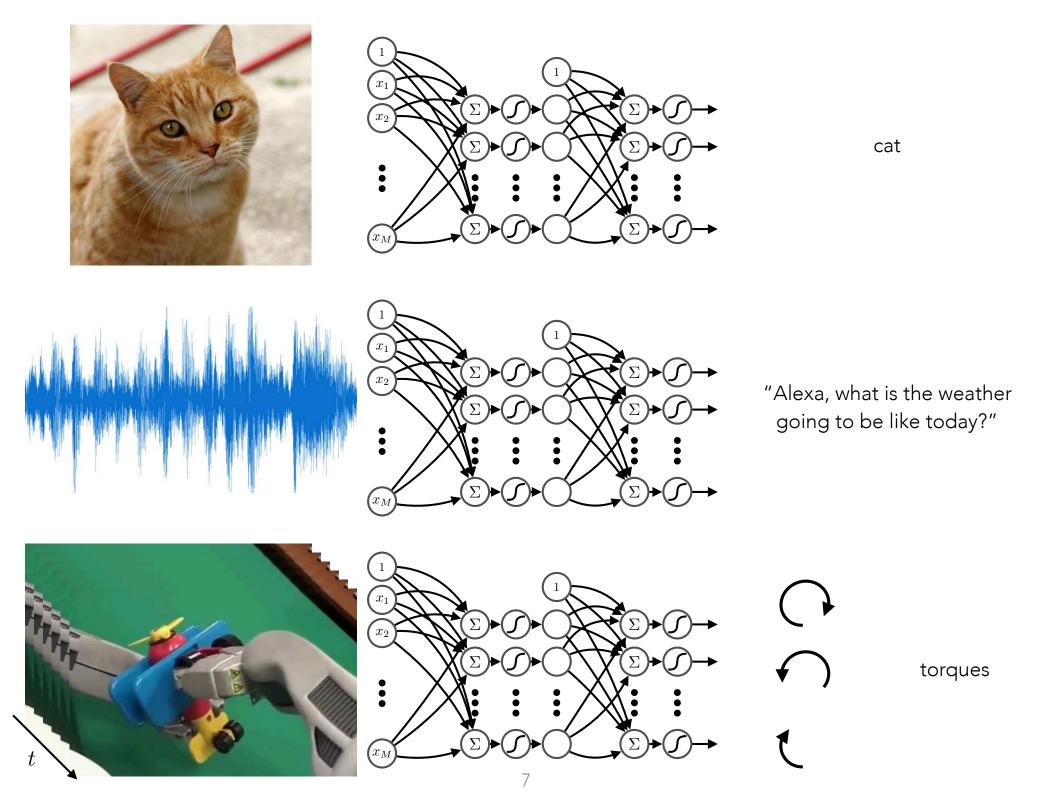
non-linearity: convert distance into non-linear field



- 1. cut the space up with hyperplanes
- 2. evaluate distances of points to hyperplanes
- 3. non-linearly transform these distances to get new points



repeat until data have been linearized



today

to scale deep networks to these domains, we often need to use *inductive biases*

INDUCTIVE BIASES

object recognition

motor scooter leopard

motor scooter leopard

go-kart jaguar

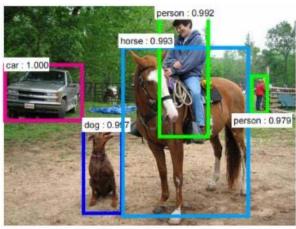
moped cheetah

bumper car snow leopard

golfcart Egyptian cat

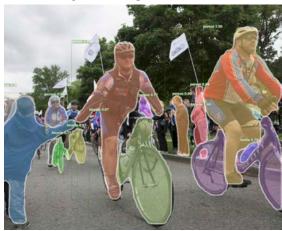
Krizhevsky et al., 2012

object detection



Ren et al., 2016

object segmentation



He et al., 2017

ultimately, we care about solving tasks

text translation

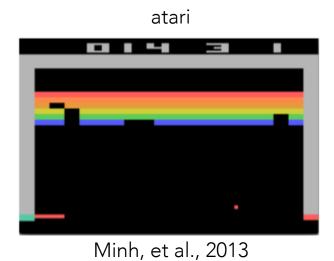
Source	Analysts believe the country is unlikely to slide back into full-blown conflict, but recent	
	events have unnerved foreign investors and locals.	
PBMT	Les analystes estiment que le pays a peu de chances de retomber dans un conflit total,	5.0
	mais les événements récents ont inquiété les investisseurs étrangers et locaux.	
GNMT	Selon les analystes, il est peu probable que le pays retombe dans un conflit généralisé,	
	mais les événements récents ont attiré des investisseurs étrangers et des habitants	2.0
	locaux.	
Human	Les analystes pensent que le pays ne devrait pas retomber dans un conflit ouvert, mais	5.0
	les récents évènements ont ébranlé les investisseurs étrangers et la population locale.	5.0

Wu et al., 2016

text question answering

1 Mary moved to the bathroom.	
2 John went to the hallway.	
3 Where is Mary? bathroom	1
4 Daniel went back to the hallway.	
5 Sandra moved to the garden.	
6 Where is Daniel? hallway 4	
7 John moved to the office.	
8 Sandra journeyed to the bathroom.	
9 Where is Daniel? hallway 4	
10 Mary moved to the hallway.	
11 Daniel travelled to the office.	
12 Where is Daniel? office 11	
13 John went back to the garden.	
14 John moved to the bedroom.	
15 Where is Sandra? bathroom	8
1 Sandra travelled to the office.	
2 Sandra went to the bathroom.	
3 Where is Sandra? bathroom	2

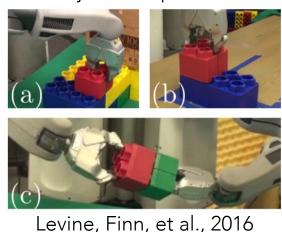
Weston et al., 2015



go Silver, Huang, et al., 2016

ultimately, we care about solving tasks

object manipulation



autonomous driving

Waymo

survival & reproduction

ultimately, we care about solving tasks

cellular signaling, maintenance

muscle actuation

organ function

vision

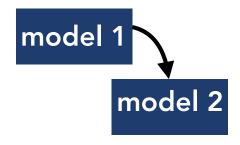
navigation

social/mating behavior

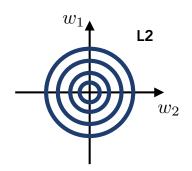
two components for solving any task

priors learning

param. values

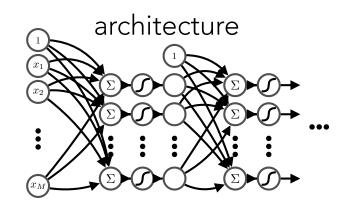


param. constraints



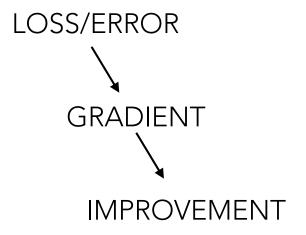
priors

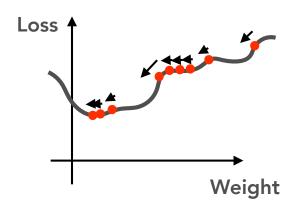
knowledge assumed beforehand



activities, outputs
•0••0•0

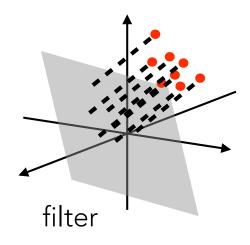
•••••





learning

knowledge extracted from data



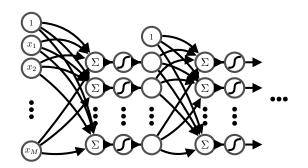
strong priors, minimal learning

- fast/easy to learn and deploy
- may be too rigid, unadaptable

weak priors, much learning

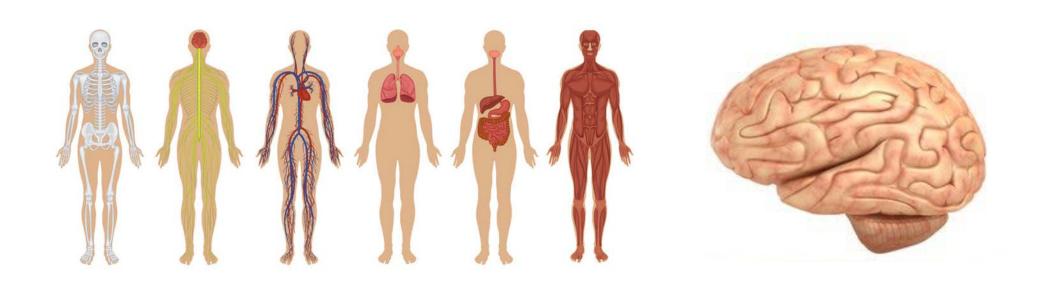
- slow/difficult to learn and deploy
- flexible, adaptable

for a desired level of performance on a task...



choose priors and collect data to obtain a model that achieves that performance in the minimal amount of time

priors are *essential* - always have to make some assumptions, cannot integrate over all possible models

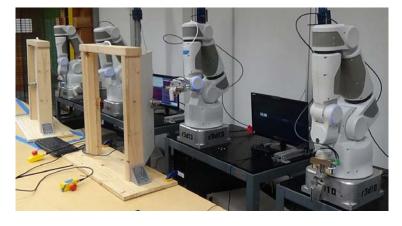


we are all initialized from evolutionary priors

humans seem to have a larger capacity for learning than other organisms

up until now, all of our machines have been purely based on priors

for the first time in history, we can now create machines that also learn



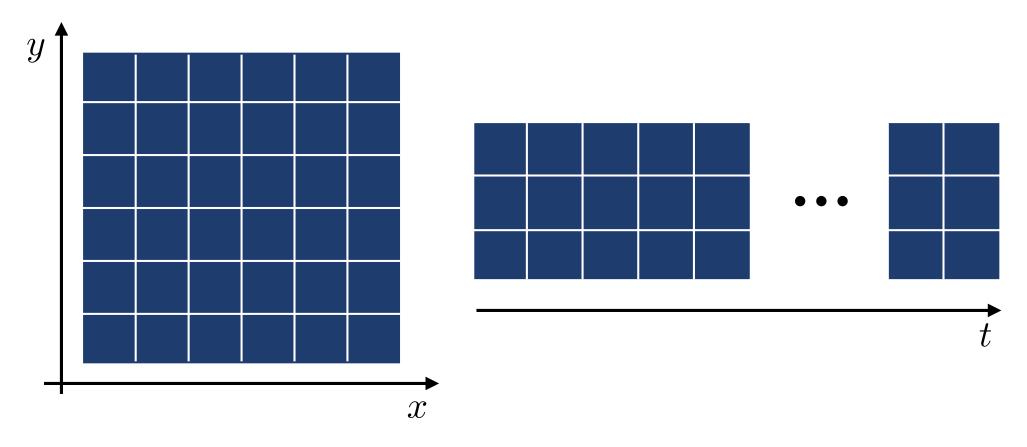
these machines can perform tasks that are impossible to hand-design

...but they are mostly still based on priors!

18 Kormushev et al.

we can exploit known structure in <u>spatial</u> and <u>sequential</u> data to impose priors (i.e. inductive biases) on our models

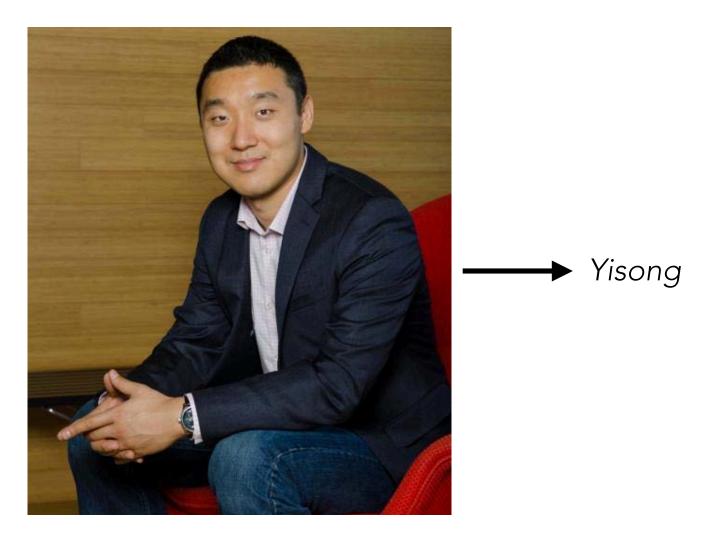
inductive: inferring general laws from examples



this allows us to learn models in complex, high-dimensional domains while limiting the number of parameters and data examples

CONVOLUTIONAL NEURAL NETWORKS

task: object recognition



discriminative mapping from image to object identity

images contain all of the information about the binary latent variable *Yisong/Not Yisong*

extract the relevant information about this latent variable to form conditional probability

inference: p(Yisong)

notice that images also contain other *nuisance* information, such as pose, lighting, background, etc.

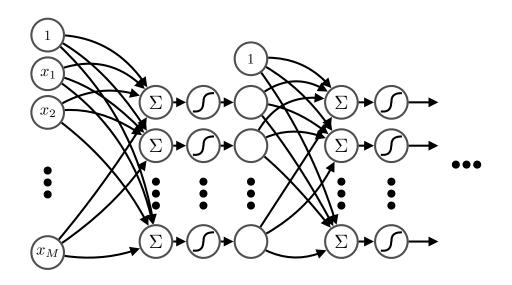
want to be invariant to nuisance information

data, label collection

the mapping is too difficult to define by hand, need to learn from data

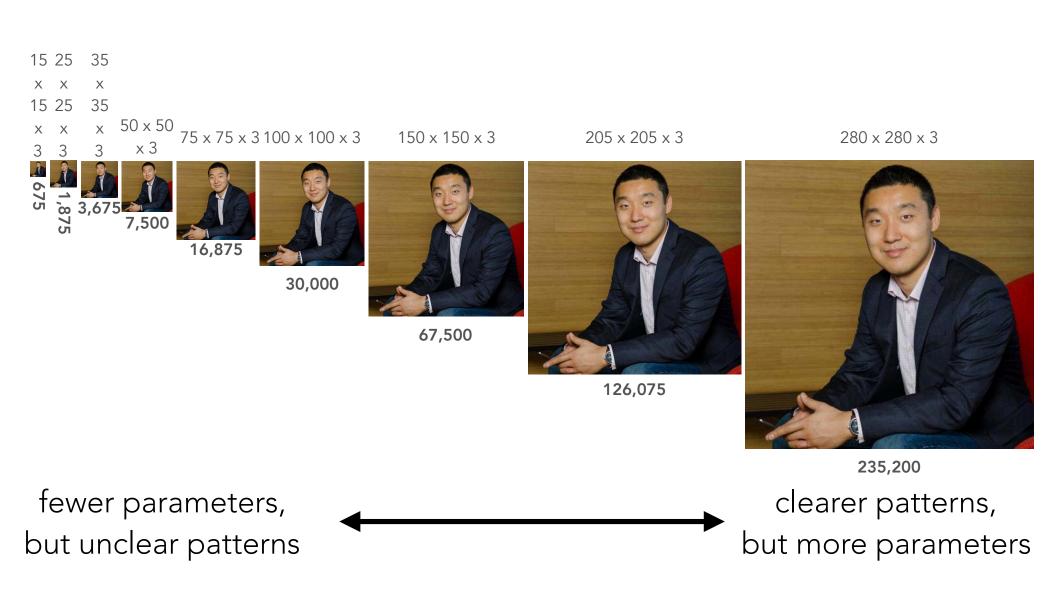
Yisong

Not Yisong

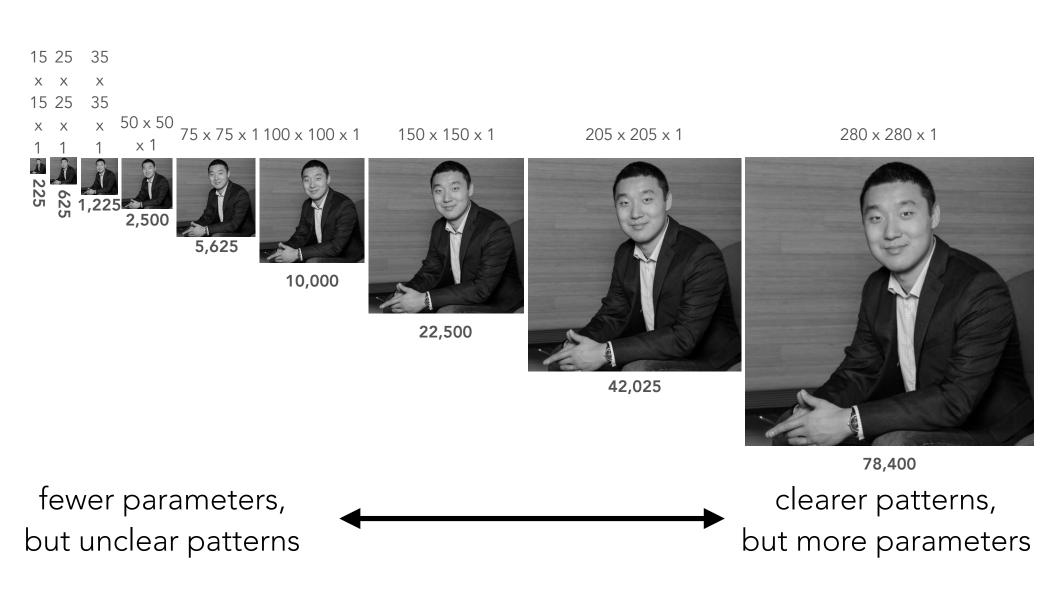


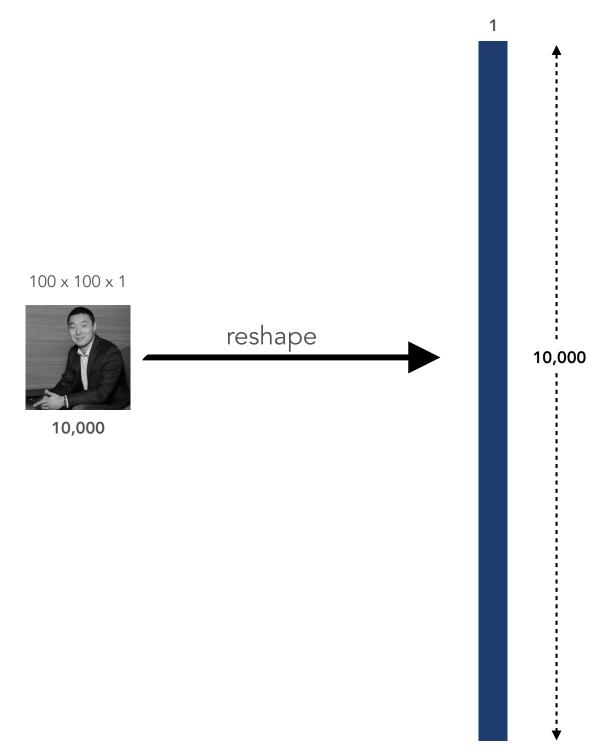
then, we need to choose a model architecture...

standard neural networks require a fixed input size...



convert to grayscale...

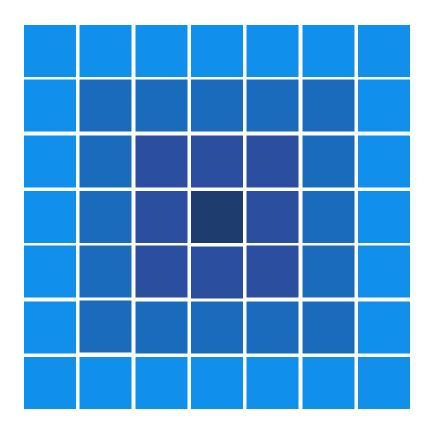




how many units do we need? **INPUT** 10,000 = # weights # units Χ 10,000 x_1 10 100,000 x_2 1,000,000 10,000 100 1,000 10,000,000 10,000 100,000,000 100,000 1,000,000,000 x_M 1,000,000 10,000,000,000

if we want to recognize even a few basic patterns at each location, the number of parameters will explode!

to reduce the amount of learning, we can introduce *inductive biases*



exploit the *spatial structure* of image data

locality

nearby areas tend to contain stronger patterns

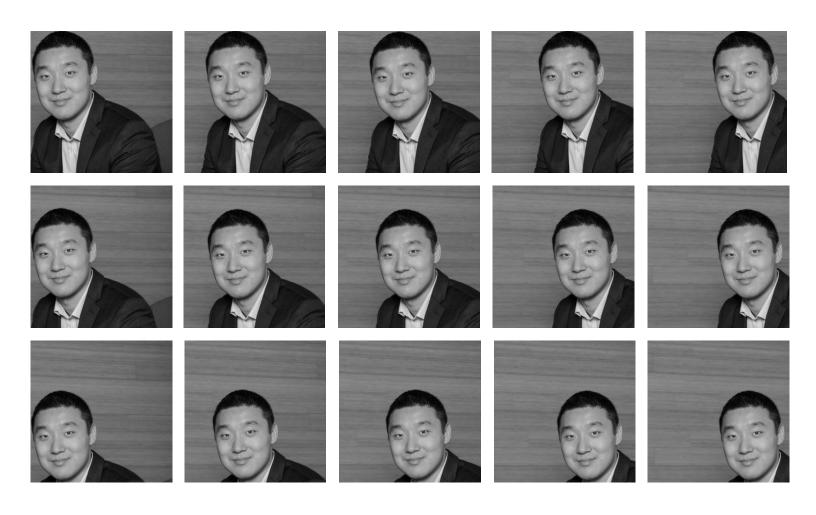
nearby *pixels* tend to be similar and vary in particular ways

nearby *patches* tend to share characteristics and are combined in particular ways

nearby *regions* tend to be found in particular arrangements

translation invariance

relative (rather than absolute) positions are relevant



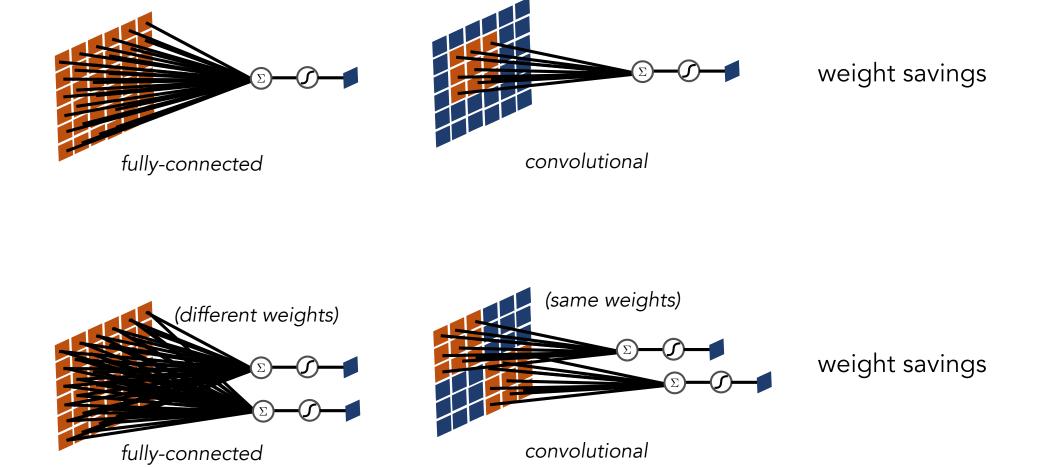
Yisong's identity is independent of absolute location of his pixels

let's convert locality and translation invariance into inductive biases

inputs can be restricted to regions locality nearby areas tend to contain stronger patterns maintain spatial ordering same filters can be applied throughout the input translation invariance relative positions are relevant same weights

these are the inductive biases of convolutional neural networks

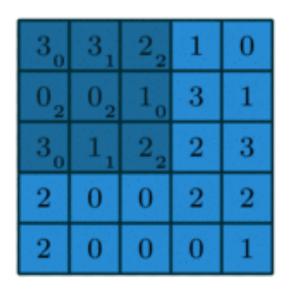
→ special case of standard (fully-connected) neural networks

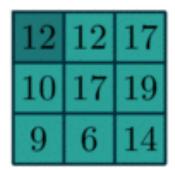


these inductive biases make the **number of weights** independent of the input size!

convolve a set of filters with the input

filter weights: $\begin{pmatrix} 0 & 1 & 2 \\ 2 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$



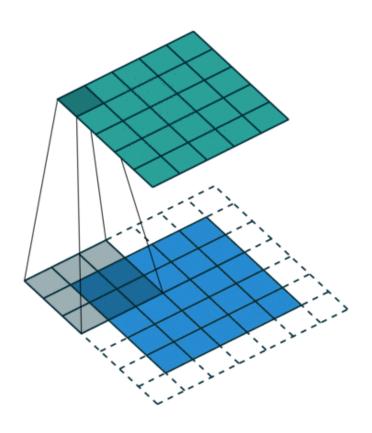


take inner (dot) product of filter and each input location

measures degree of filter feature at input location

→ feature map

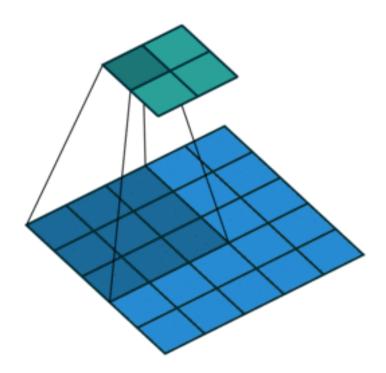
use *padding* to preserve spatial size



typically add zeros around the perimeter

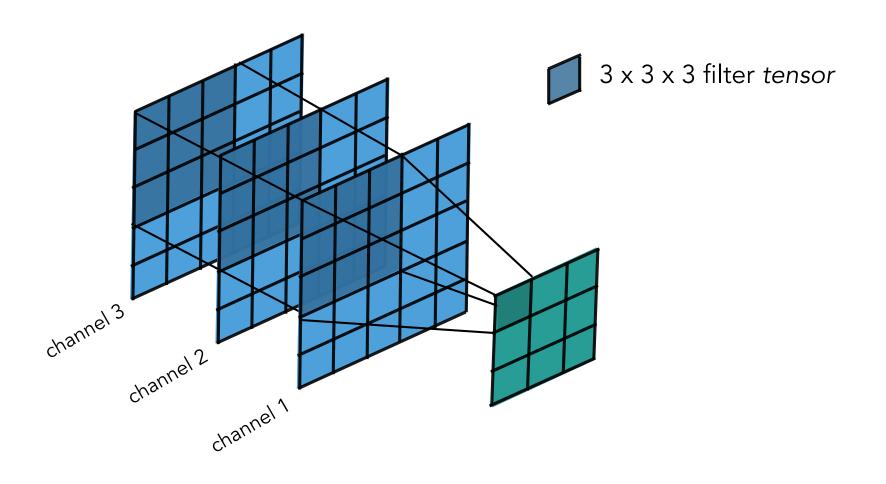
use **stride** to downsample the input

stride = 2



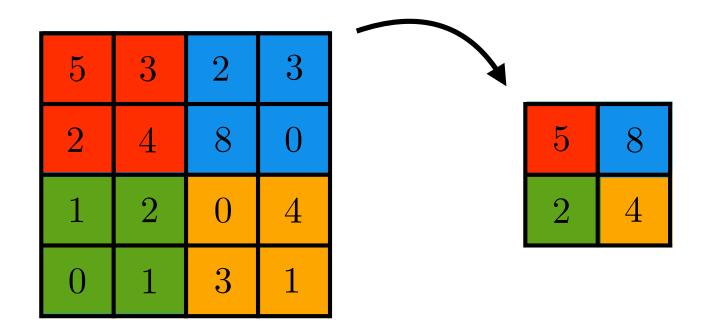
only compute output at some integer interval

filters are applied to all input channels



each filter results in a new output channel

pooling locally aggregates values in each feature map

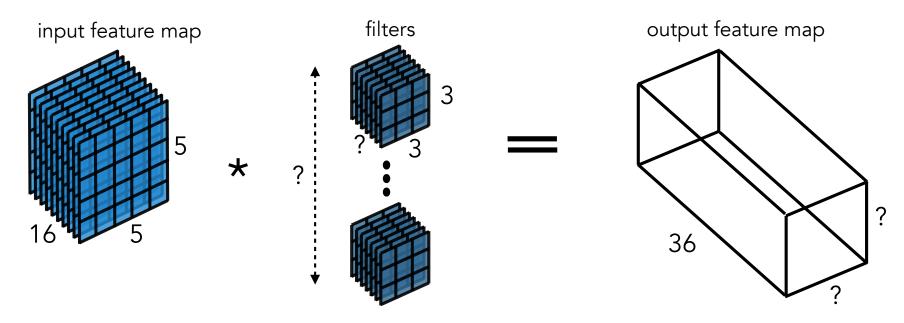


downsampling and invariance

can be applied with padding and stride

predefined operation: maximum, average, etc.

convolutional pop-quiz



if we use stride=1 and padding=0 then...

how many filters are there? 36 same as the number of output channels what size is each filter? $3 \times 3 \times 16$ channels match the number of input channels what is the output filter map size? $3 \times 3 \times 36$ result of only valid convolutions

natural image datasets

•••

Cal	tecl	h-1	01
\mathbf{v}			•

101 classes, 9,146 images Caltech-256

256 classes, 30,607 images 10 classes,

60,000 images

100 classes, 60,000 images

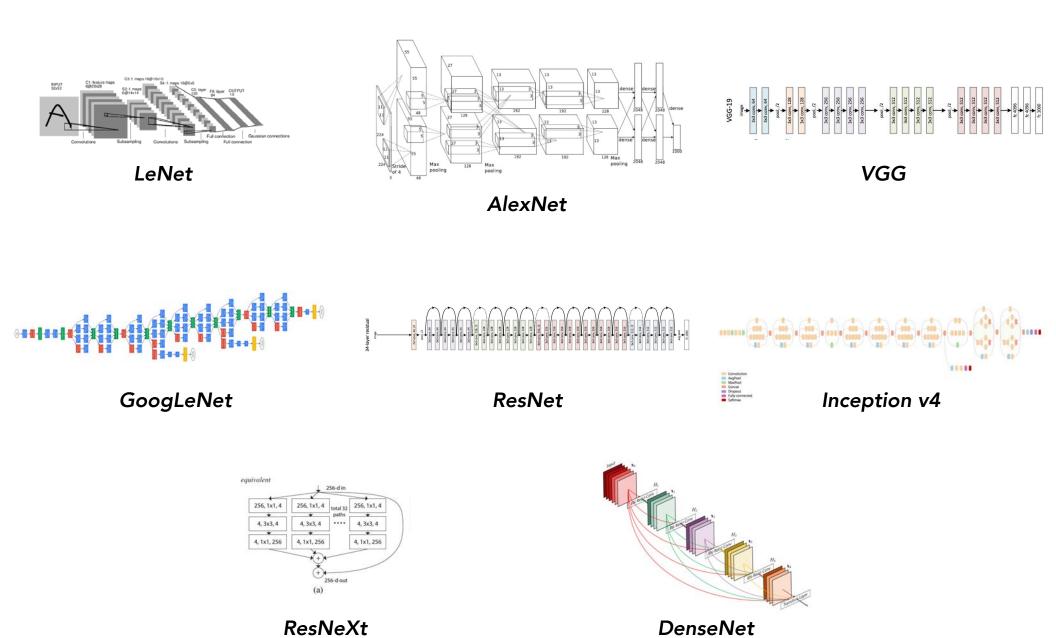
CIFAR-100

ImageNet
Competition Full
1,000 classes, 21,841 cla

1.2 million images

21,841 classes, 14 million images

convolutional models for classification



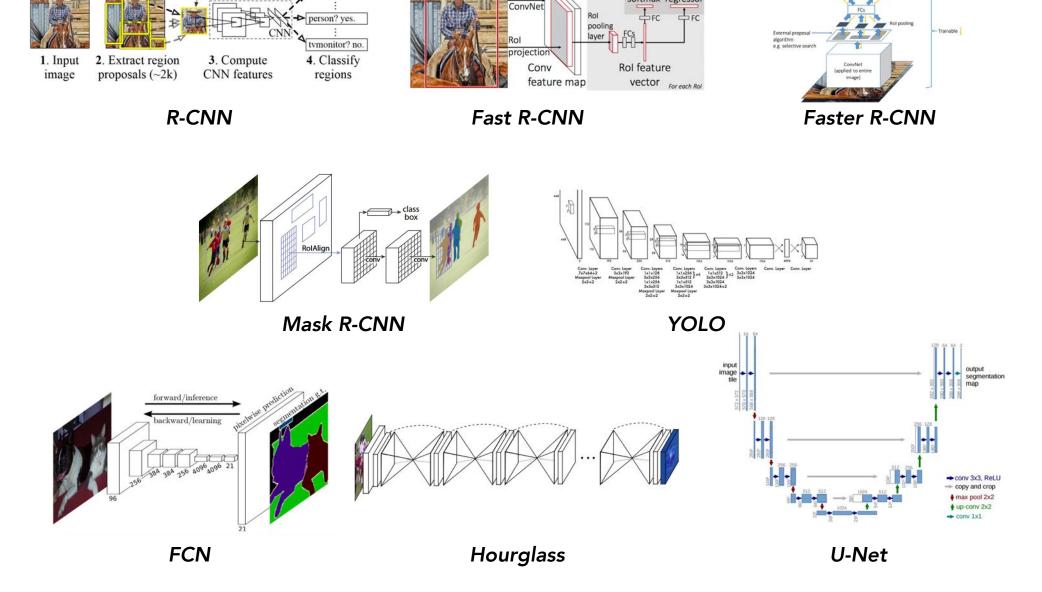
convolutional models for detection, segmentation, etc.

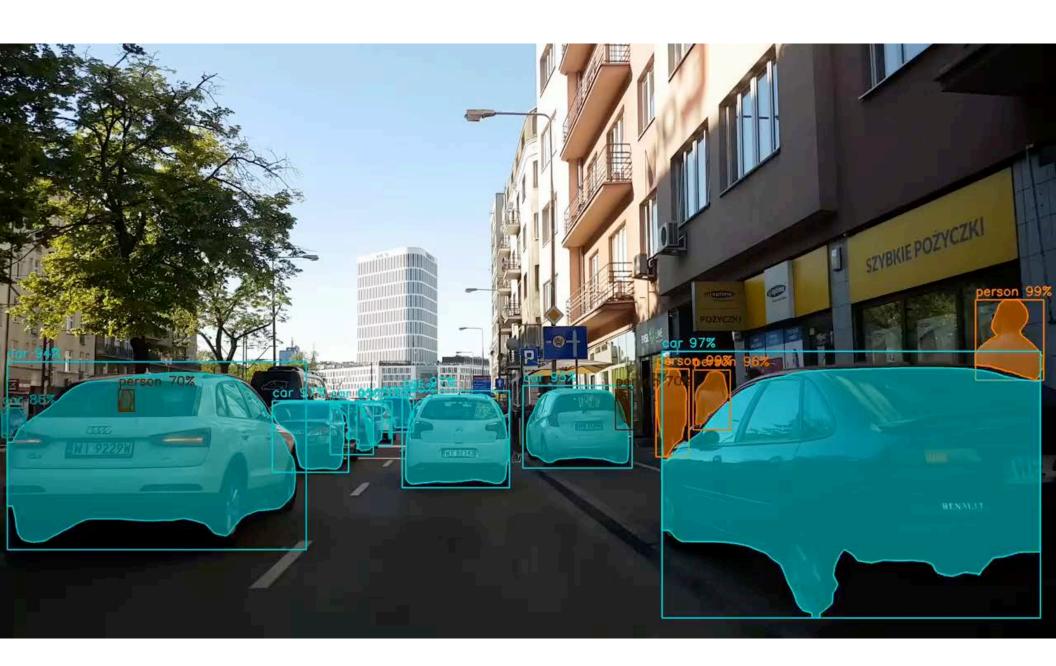
warped region

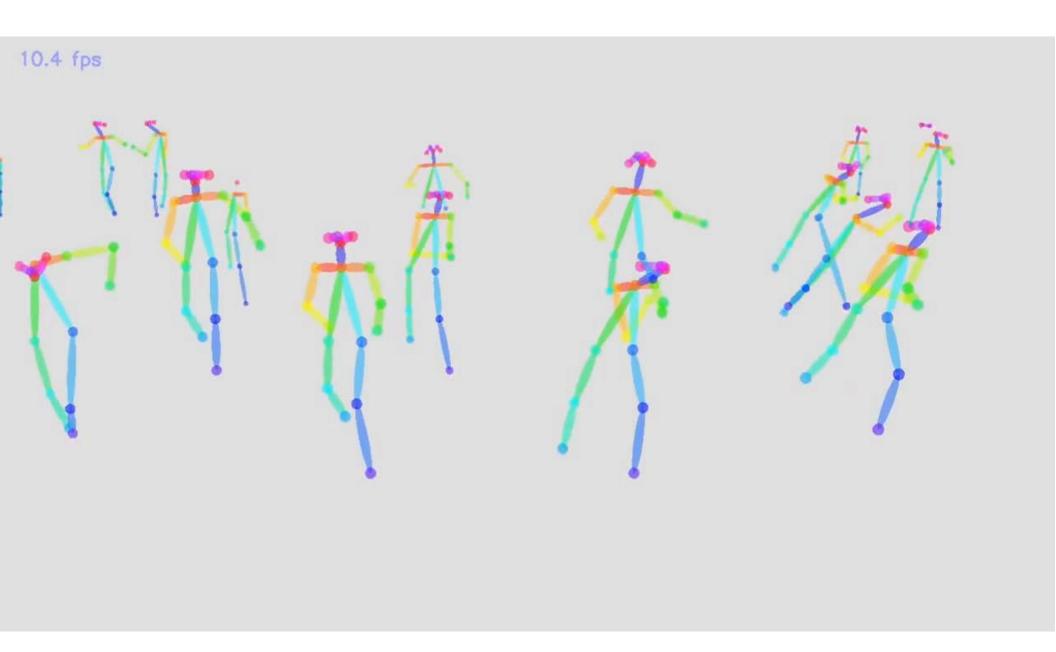
aeroplane? no.

bbox

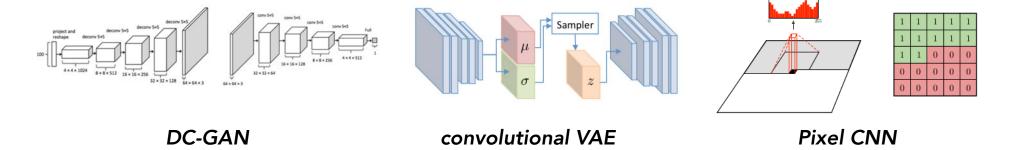
softmax regressor





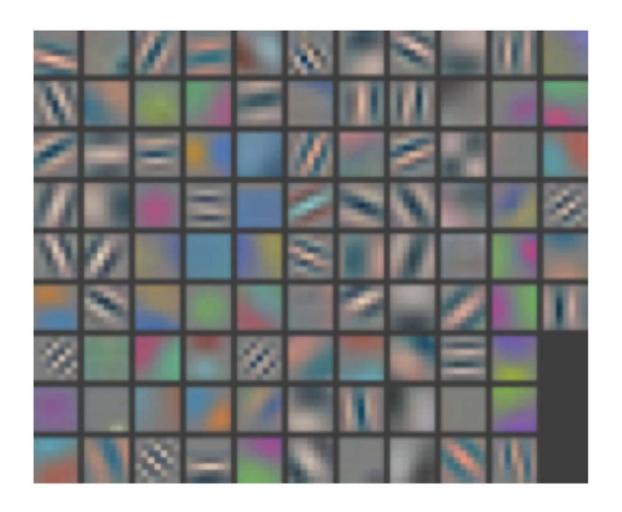


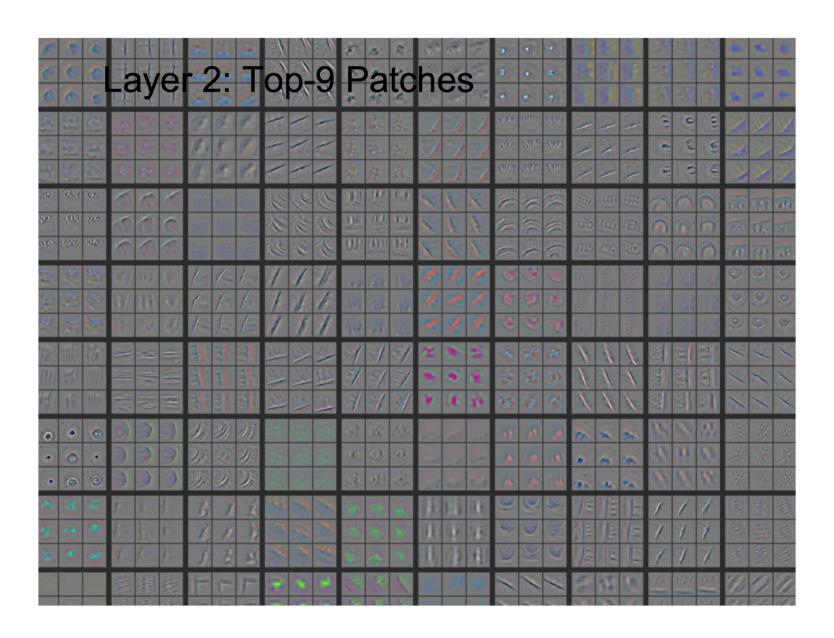
convolutional models for image generation

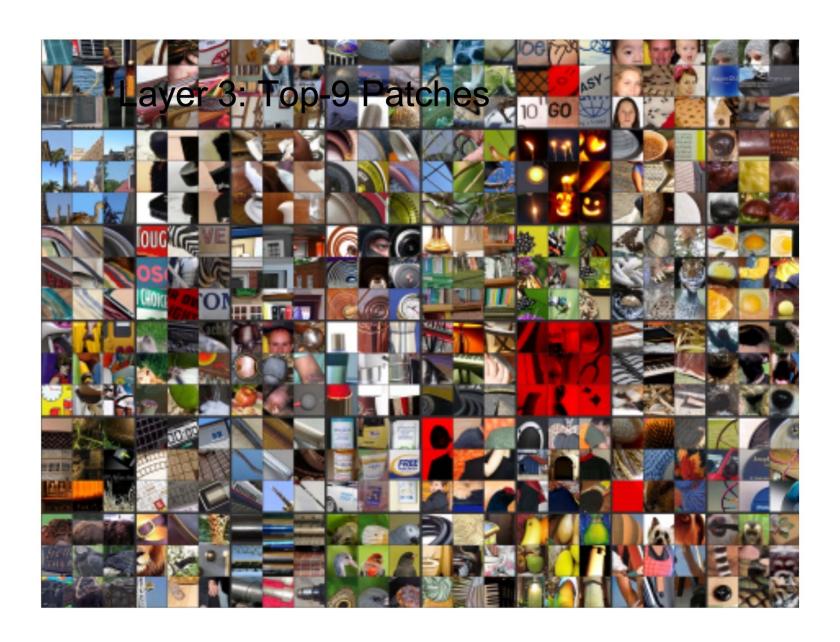


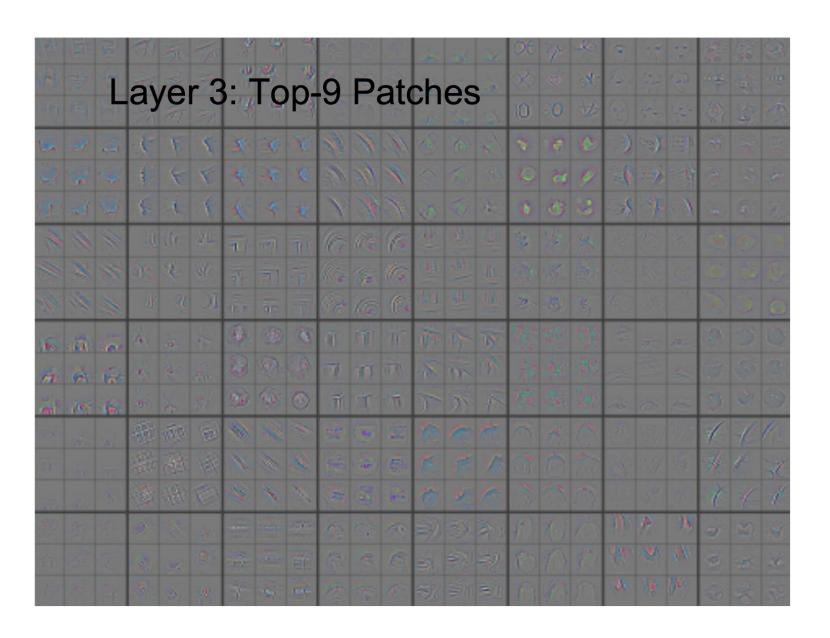
CelebA-HQ 1024 × 1024

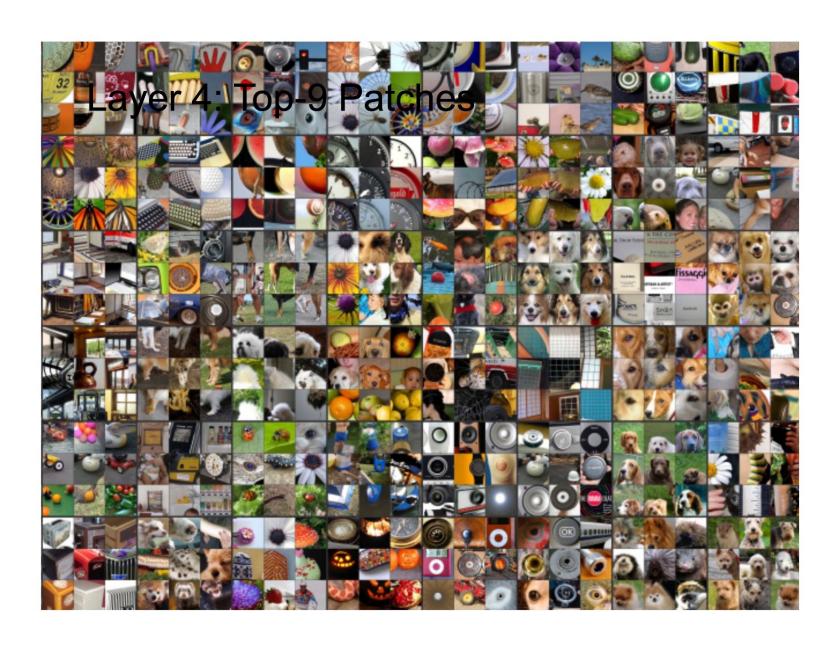
Progressive growing

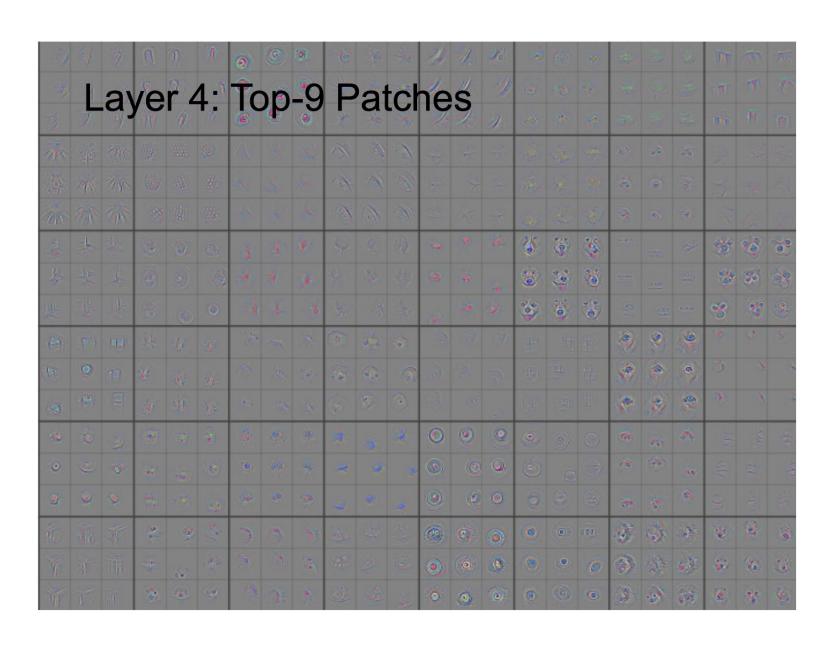


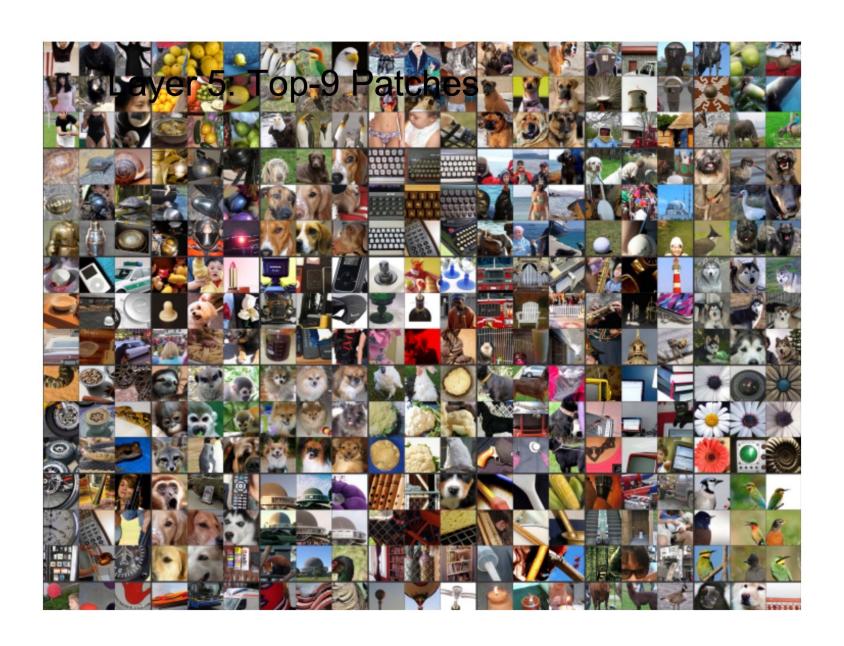


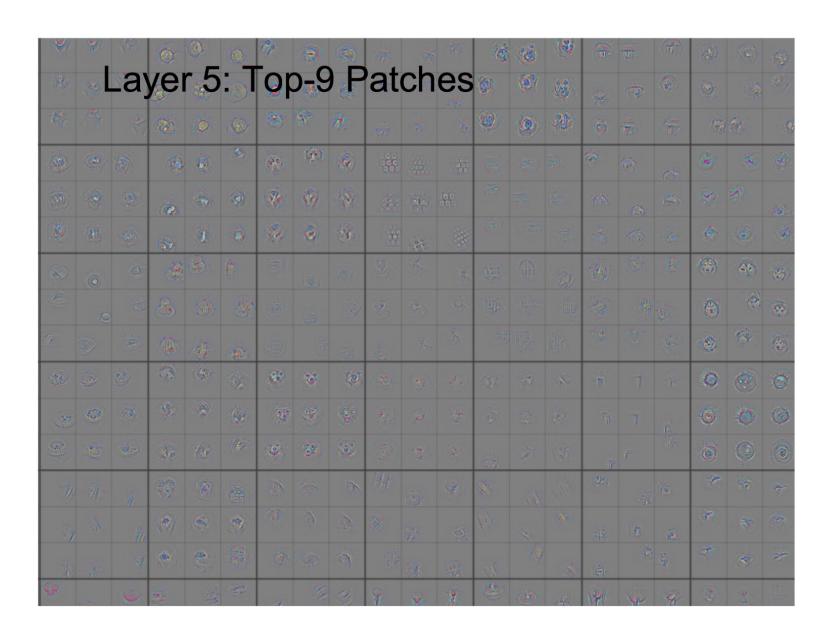


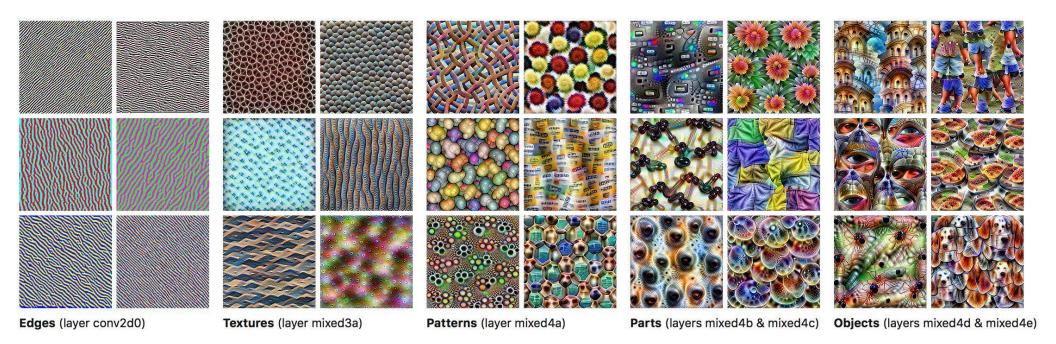




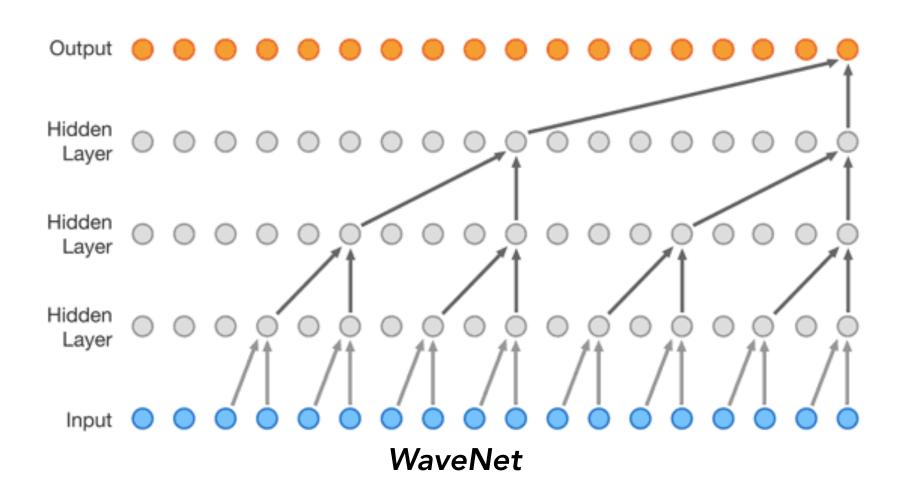




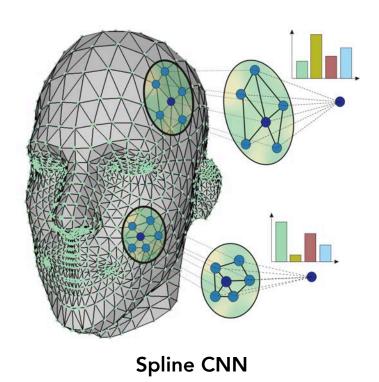




convolutions applied to sequences



convolutions in non-euclidean spaces



Hidden layer

Hidden layer

Output

ReLU

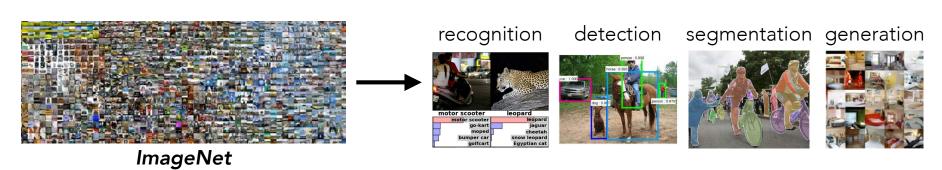
Graph Convolutional Network

recapitulation

we can exploit spatial structure to impose inductive biases on the model

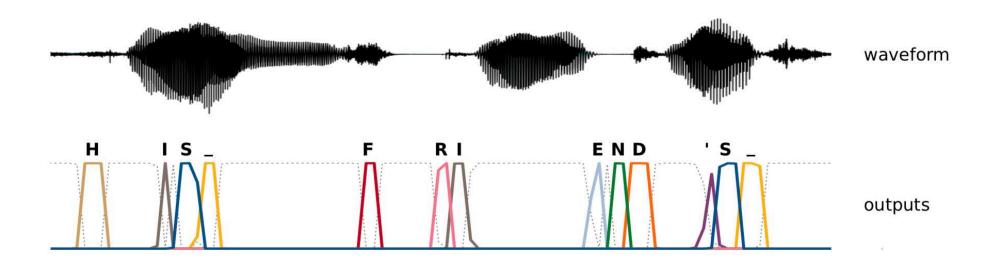
this limits the number of parameters required, reducing flexibility in reasonable ways

can then scale these models to complex data sets to perform difficult tasks



RECURRENT NEURAL NETWORKS

task: speech recognition



Graves & Jaitly, 2014

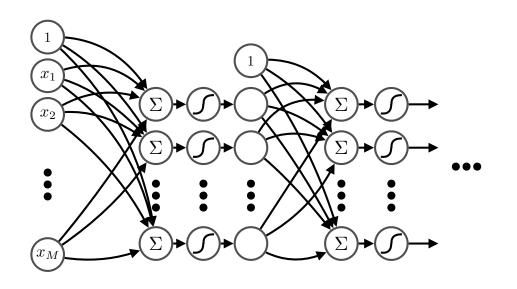
mapping from input waveform to sequence of characters

the input waveform contains all of the information about the corresponding transcribed text

again, there is *nuisance information* in the waveform coming from the speaker's voice characteristics, volume, background, etc.

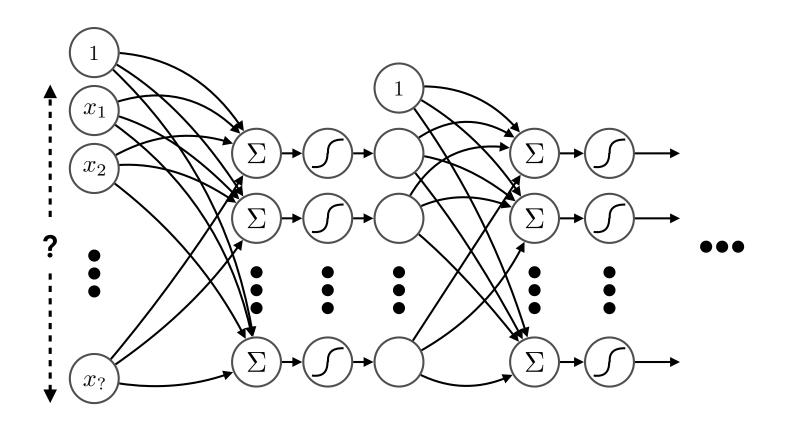
data, label collection

the mapping is too difficult to define by hand, need to learn from data



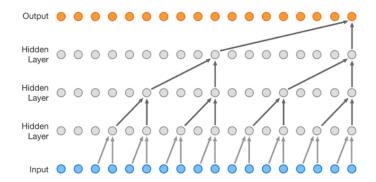
but how do we define the network architecture?

problem: inputs can be of variable size



standard neural networks can only handle data of a fixed input size

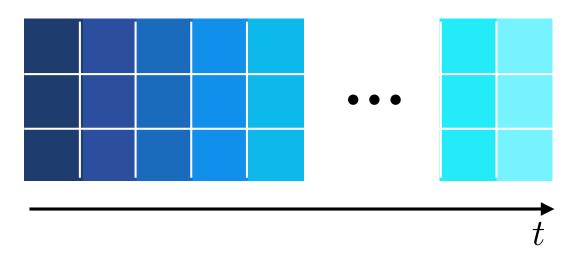
wait, but *convolutional networks* can handle variable input sizes... can't we just use them?



however, this relies on a <u>fixed input window size</u>

we may be able to exploit additional structure in sequence data to impose better inductive biases

the structure of sequence data

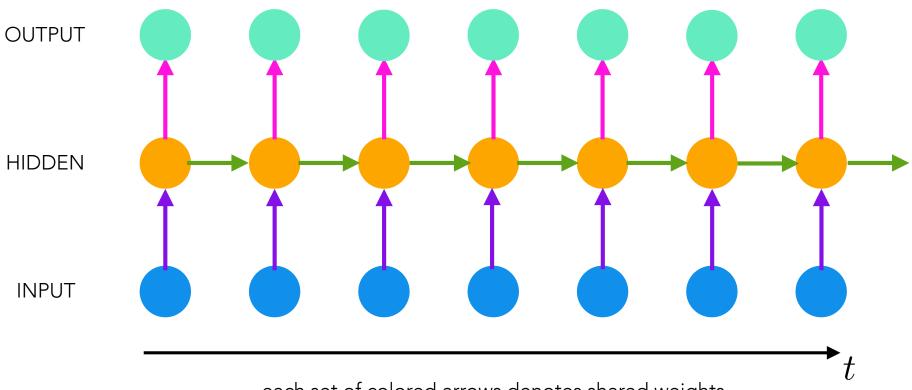


sequence data *also* tends to obey

locality: nearby regions tend to form stronger patterns
translation invariance: patterns are relative rather than absolute

but has a *single* axis on which extended patterns occur

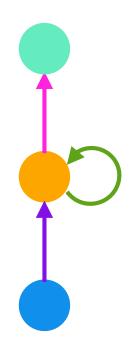
to mirror the sequential structure of the data, we can process the data sequentially



each set of colored arrows denotes shared weights

maintain an internal representation during processing
 potentially infinite effective input window
 fixed number of parameters

a recurrent neural network (RNN) can be expressed as



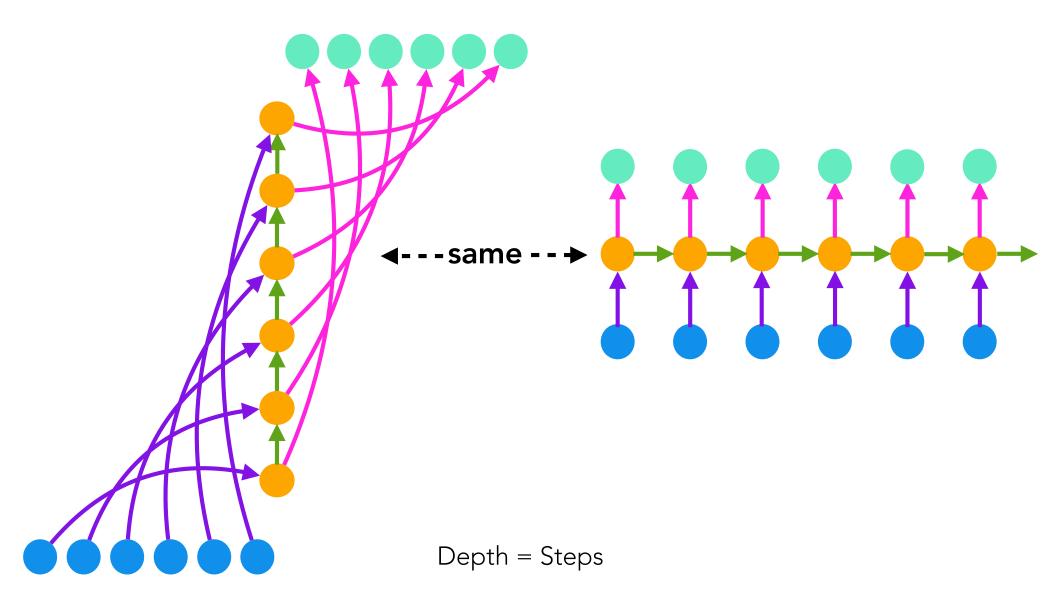
Hidden State

$$\mathbf{h}_t = \sigma(\mathbf{W}_{\mathbf{h}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

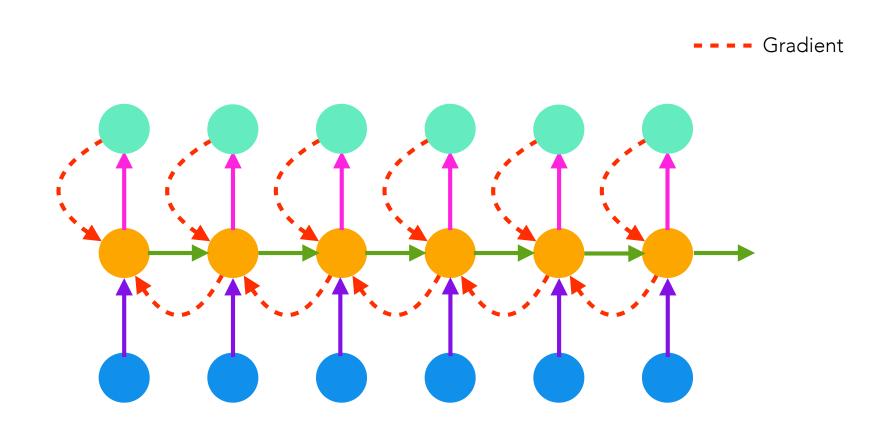
Output

$$\mathbf{y}_t = \sigma(\mathbf{W}_{\mathbf{y}}^{\mathsf{T}} \mathbf{h}_t)$$

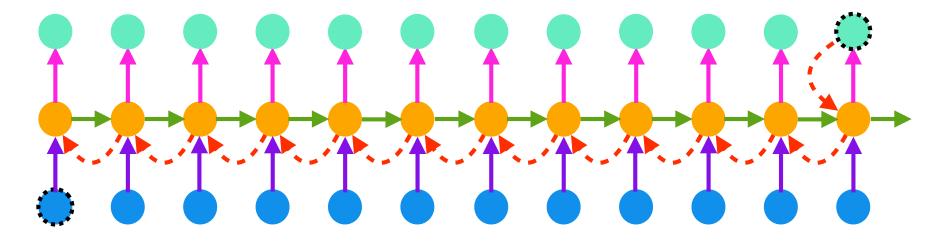
basic recurrent networks are also a <u>special case</u> of standard neural networks with *skip connections* and *shared weights*



therefore, we can use standard backpropagation to train, resulting in **backpropagation through time (BPTT)**



primary difficulty of training RNNs involves propagating information over long horizons

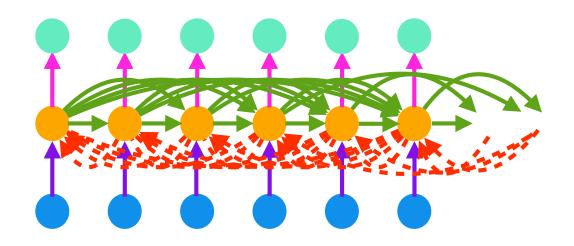


e.g. input at one step is predictive of output at much later step

learning extended sequential dependencies requires propagating gradients over long horizons

- vanishing / exploding gradients
- large memory/computational footprint

naïve attempt to fix information propagation issue



add skip connections across steps

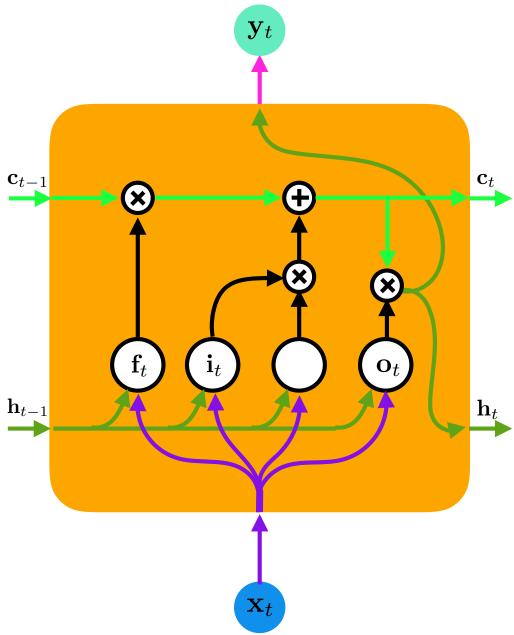
information, gradients can propagate more easily

but...

- increases computation
- must set limit on window size

add trainable **memory** to the network

read from and write to "cell" state



Long Short-Term Memory (LSTM)

Forget Gate

$$\mathbf{f}_t = \sigma(\mathbf{W}_{\mathbf{f}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Input Gate

$$\mathbf{i}_t = \sigma(\mathbf{W}_{\mathbf{i}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Cell State

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \tanh(\mathbf{W}_{\mathbf{c}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Output Gate

$$\mathbf{o}_t = \sigma(\mathbf{W}_{\mathbf{o}}^\intercal[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

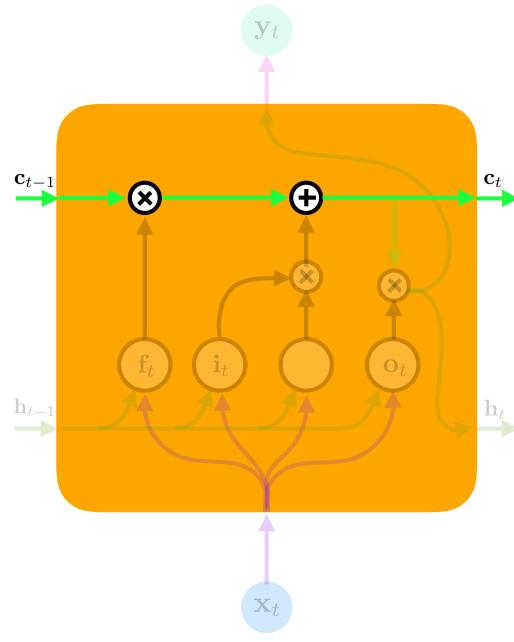
Hidden State

$$\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{c}_t)$$

Output

$$\mathbf{y}_t = \sigma(\mathbf{W}_{\mathbf{y}}^{\intercal} \mathbf{h}_t)$$

read from and write to "cell" state



Long Short-Term Memory (LSTM)

Forget Gate

$$\mathbf{f}_t = \sigma(\mathbf{W}_{\mathbf{f}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Input Gate

$$\mathbf{i}_t = \sigma(\mathbf{W}_{\mathbf{i}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Cell State

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \tanh(\mathbf{W}_{\mathbf{c}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Output Gate

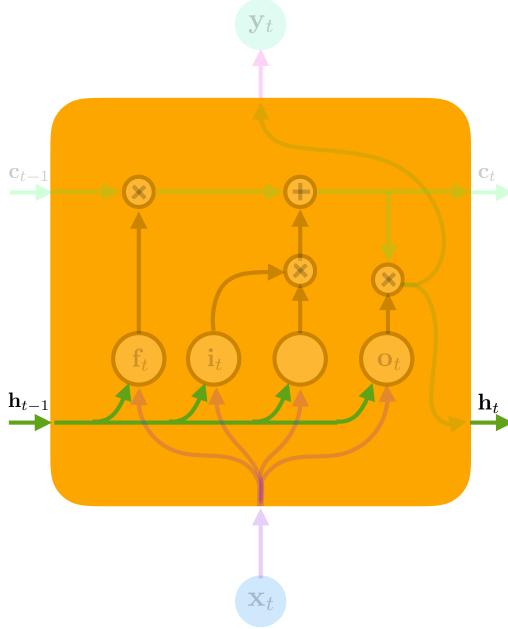
$$\mathbf{o}_t = \sigma(\mathbf{W}_{\mathbf{o}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Hidden State

$$\mathbf{h}_t = \mathbf{o}_t \odot \mathrm{tanh}(\mathbf{c}_t)$$

$$\mathbf{y}_t = \sigma(\mathbf{W}_{\mathbf{y}}^{\mathsf{T}} \mathbf{h}_t)$$

read from and write to "cell" state



Long Short-Term Memory (LSTM)

Forget Gate

$$\mathbf{f}_t = \sigma(\mathbf{W}_{\mathbf{f}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Input Gate

$$\mathbf{i}_t = \sigma(\mathbf{W}_{\mathbf{i}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Cell State

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \tanh(\mathbf{W}_{\mathbf{c}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Output Gate

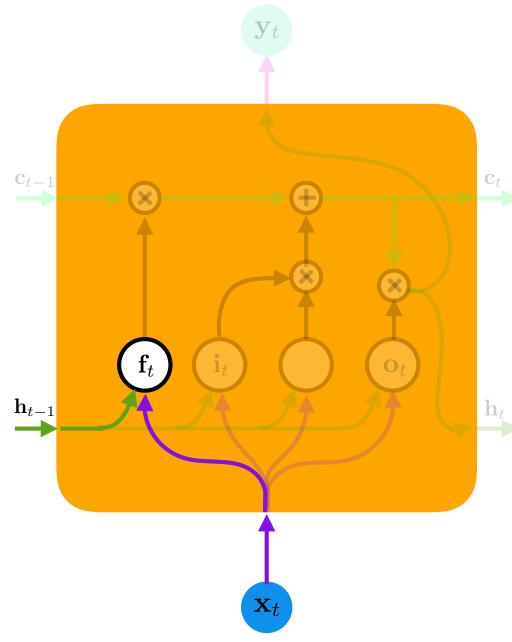
$$\mathbf{o}_t = \sigma(\mathbf{W}_{\mathbf{o}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Hidden State

$$\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{c}_t)$$

$$\mathbf{y}_t = \sigma(\mathbf{W}_{\mathbf{y}}^{\mathsf{T}} \mathbf{h}_t)$$

read from and write to "cell" state



Long Short-Term Memory (LSTM)

Forget Gate

$$\mathbf{f}_t = \sigma(\mathbf{W}_{\mathbf{f}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Input Gate

$$\mathbf{i}_t = \sigma(\mathbf{W}_{\mathbf{i}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Cell State

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \tanh(\mathbf{W}_{\mathbf{c}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Output Gate

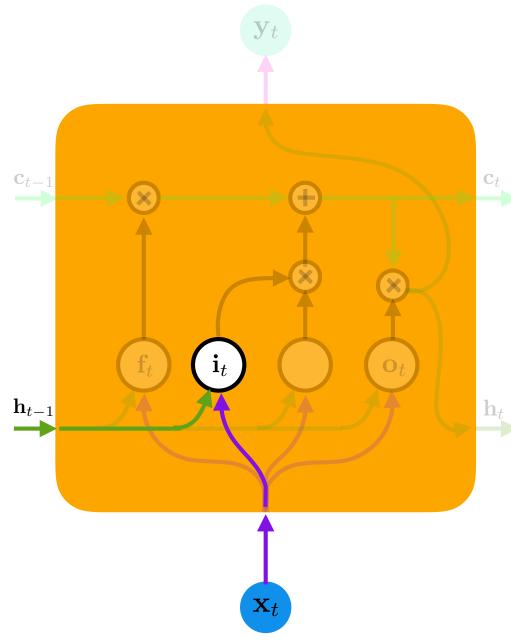
$$\mathbf{o}_t = \sigma(\mathbf{W}_{\mathbf{o}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Hidden State

$$\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{c}_t)$$

$$\mathbf{y}_t = \sigma(\mathbf{W}_{\mathbf{y}}^{\mathsf{T}} \mathbf{h}_t)$$

read from and write to "cell" state



Long Short-Term Memory (LSTM)

Forget Gate

$$\mathbf{f}_t = \sigma(\mathbf{W}_{\mathbf{f}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Input Gate

$$\mathbf{i}_t = \sigma(\mathbf{W}_{\mathbf{i}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Cell State

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \tanh(\mathbf{W}_{\mathbf{c}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Output Gate

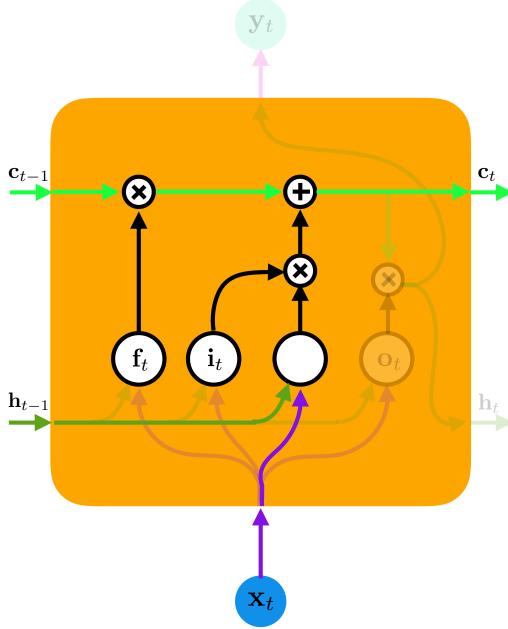
$$\mathbf{o}_t = \sigma(\mathbf{W}_{\mathbf{o}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Hidden State

$$\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{c}_t)$$

$$\mathbf{y}_t = \sigma(\mathbf{W}_{\mathbf{y}}^{\intercal} \mathbf{h}_t)$$

read from and write to "cell" state



Long Short-Term Memory (LSTM)

Forget Gate

$$\mathbf{f}_t = \sigma(\mathbf{W}_{\mathbf{f}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Input Gate

$$\mathbf{i}_t = \sigma(\mathbf{W}_{\mathbf{i}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Cell State

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \tanh(\mathbf{W}_{\mathbf{c}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Output Gate

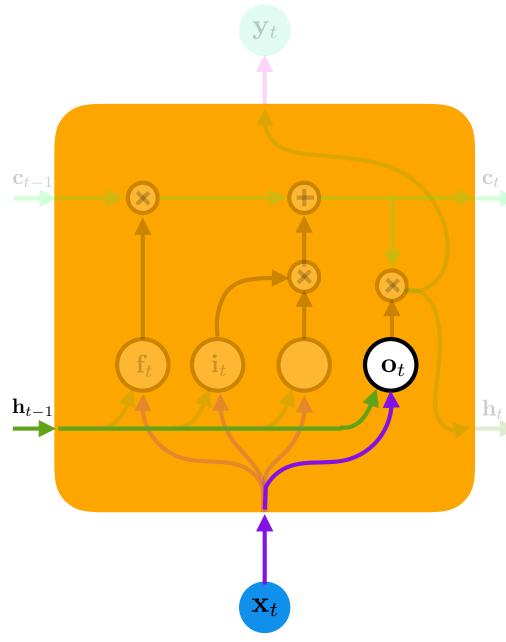
$$\mathbf{o}_t = \sigma(\mathbf{W}_{\mathbf{o}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Hidden State

$$\mathbf{h}_t = \mathbf{o}_t \odot \mathrm{tanh}(\mathbf{c}_t)$$

$$\mathbf{y}_t = \sigma(\mathbf{W}_{\mathbf{y}}^{\mathsf{T}} \mathbf{h}_t)$$

read from and write to "cell" state



Long Short-Term Memory (LSTM)

Forget Gate

$$\mathbf{f}_t = \sigma(\mathbf{W}_{\mathbf{f}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Input Gate

$$\mathbf{i}_t = \sigma(\mathbf{W}_{\mathbf{i}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Cell State

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \tanh(\mathbf{W}_{\mathbf{c}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Output Gate

$$\mathbf{o}_t = \sigma(\mathbf{W}_{\mathbf{o}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Hidden State

$$\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{c}_t)$$

$$\mathbf{y}_t = \sigma(\mathbf{W}_{\mathbf{y}}^{\mathsf{T}} \mathbf{h}_t)$$

read from and write to "cell" state



Long Short-Term Memory (LSTM)

Forget Gate

$$\mathbf{f}_t = \sigma(\mathbf{W}_{\mathbf{f}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Input Gate

$$\mathbf{i}_t = \sigma(\mathbf{W}_{\mathbf{i}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Cell State

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \tanh(\mathbf{W}_{\mathbf{c}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Output Gate

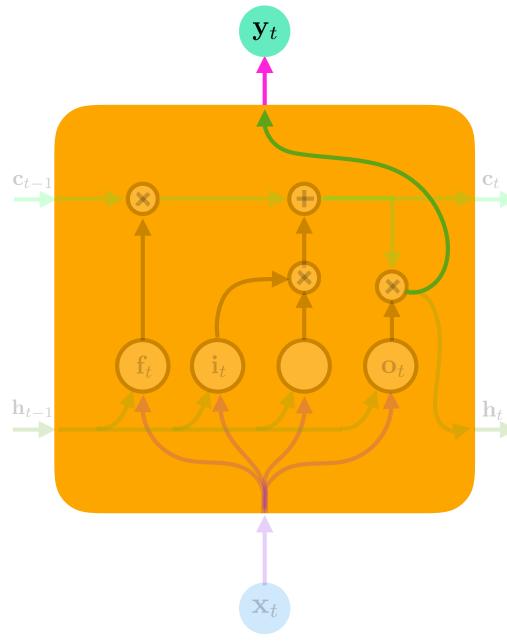
$$\mathbf{o}_t = \sigma(\mathbf{W}_{\mathbf{o}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Hidden State

$$\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{c}_t)$$

$$\mathbf{y}_t = \sigma(\mathbf{W}_{\mathbf{y}}^{\intercal} \mathbf{h}_t)$$

read from and write to "cell" state



Long Short-Term Memory (LSTM)

Forget Gate

$$\mathbf{f}_t = \sigma(\mathbf{W}_{\mathbf{f}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Input Gate

$$\mathbf{i}_t = \sigma(\mathbf{W}_{\mathbf{i}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Cell State

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \tanh(\mathbf{W}_{\mathbf{c}}^{\mathsf{T}}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Output Gate

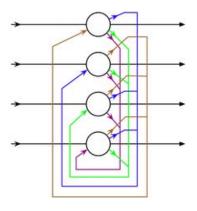
$$\mathbf{o}_t = \sigma(\mathbf{W}_{\mathbf{o}}^{\intercal}[\mathbf{h}_{t-1}, \mathbf{x}_t])$$

Hidden State

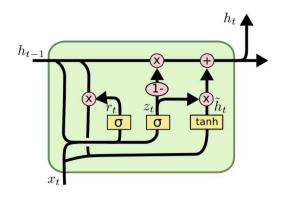
$$\mathbf{h}_t = \mathbf{o}_t \odot \mathrm{tanh}(\mathbf{c}_t)$$

$$\mathbf{y}_t = \sigma(\mathbf{W}_{\mathbf{y}}^{\mathsf{T}} \mathbf{h}_t)$$

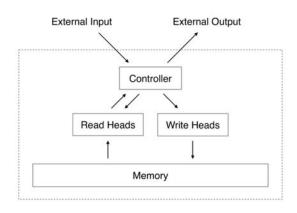
memory networks



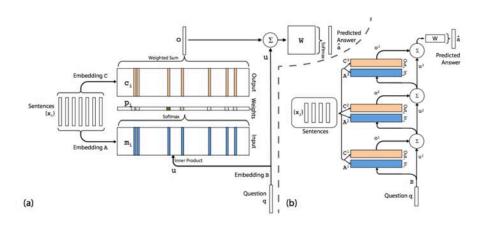
Hopfield Network Hopfield, 1982



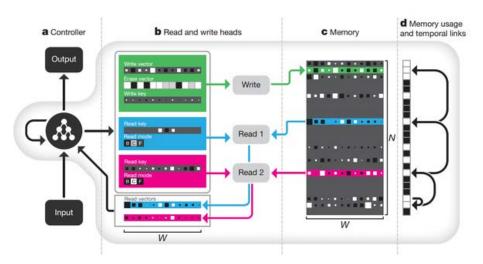
Gated Recurrent Unit (GRU) Cho et al., 2014



Neural Turing Machine (NTM) Graves et al., 2014



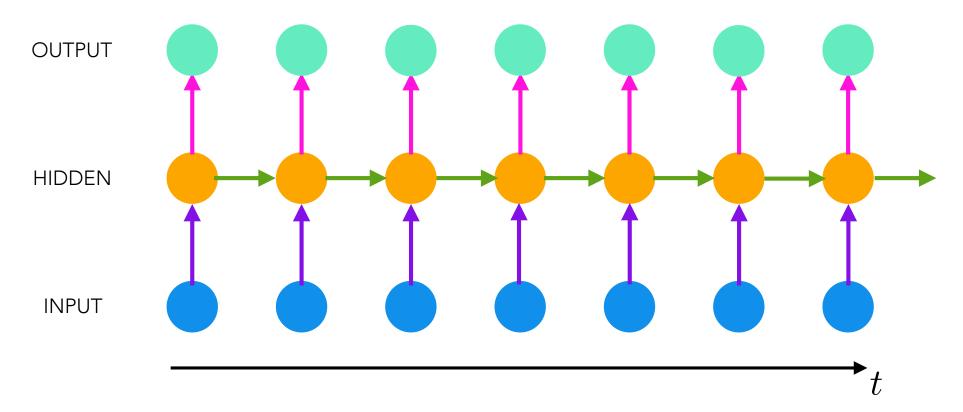
Memory Networks (MemNN) Weston et al., 2015



Differentiable Neural Computer (DNC) Graves, Wayne, et al., 2016

bi-directional RNNs

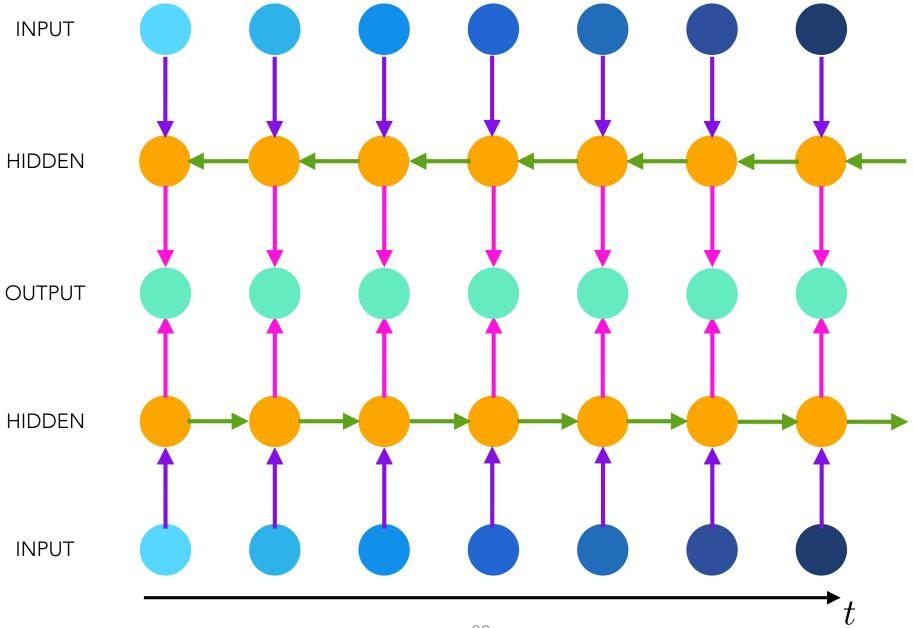
up until now, we have considered the output of the network to only be a function of the preceding inputs (*filtering*)



but future inputs may help in determining this output (*smoothing*)

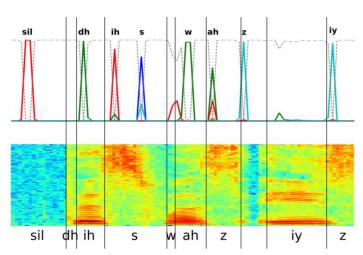
can we make the output a function of both the future and the past inputs?

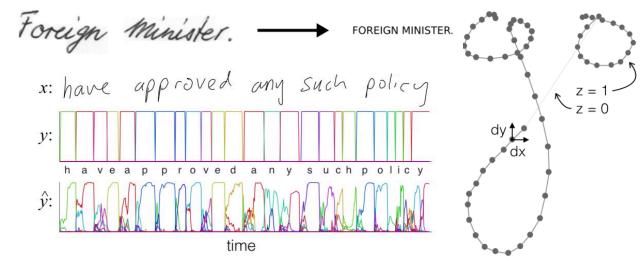
bi-directional RNNs



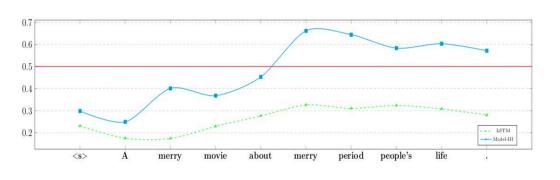
audio classification

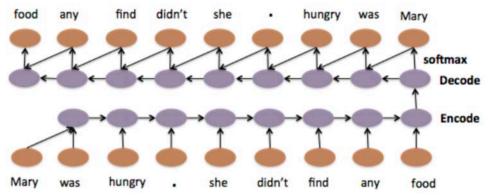
handwriting classification





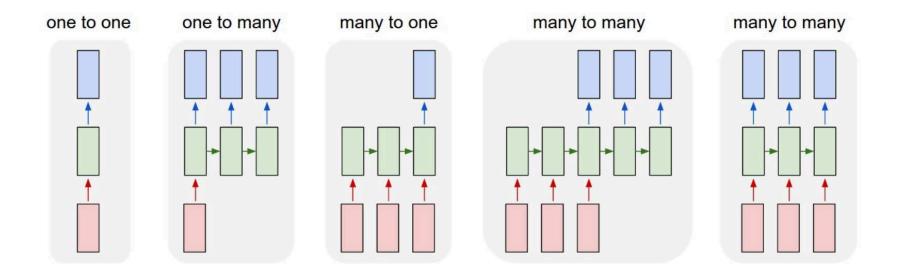
text classification



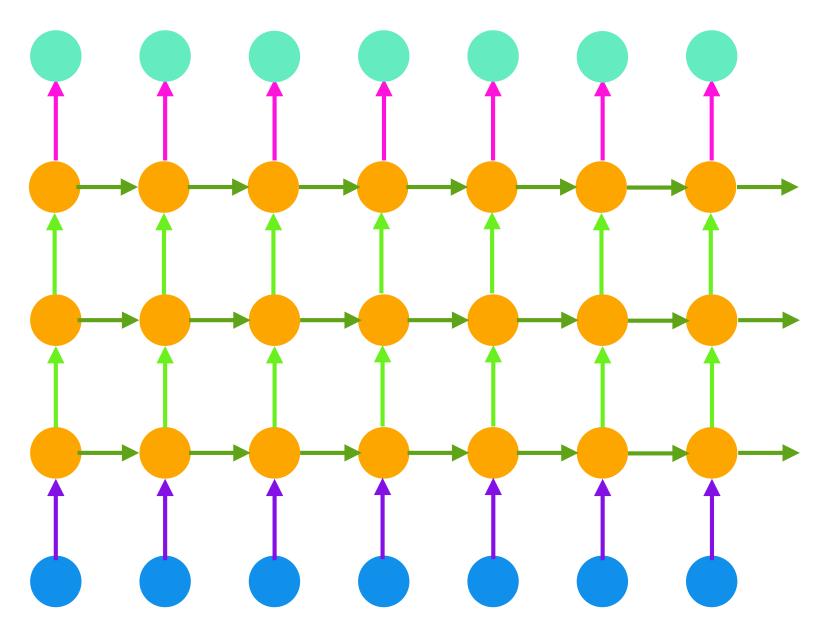


Graves, et al., 2013 Eyolfsdottir, et al., 2017 Others

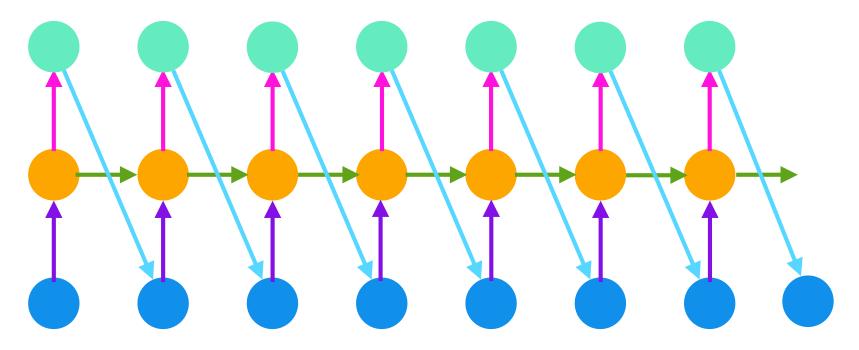
tons of options!



deep recurrent neural networks



auto-regressive generative modeling



output becomes next input

auto-regressive generative language modeling

PANDARUS: Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep. Second Senator: They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states. DUKE VINCENTIO: Well, your wit is in the care of side and that. Second Lord: They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars. Clown: Come, sir, I will make did behold your worship. VIOLA:

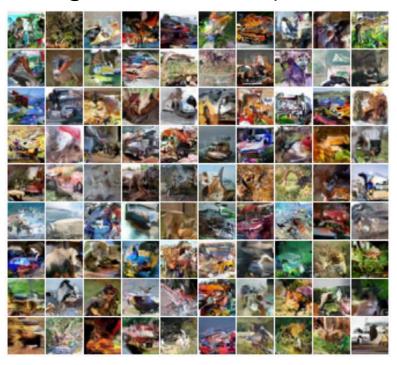
I'll drink it.

Pixel RNN uses recurrent networks to perform auto-regressive image generation

context

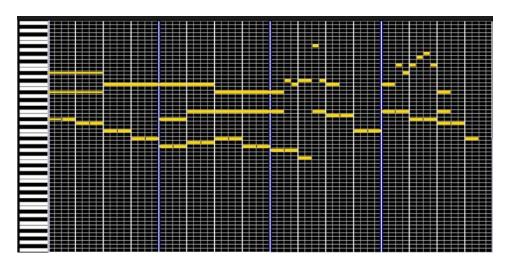


generated samples



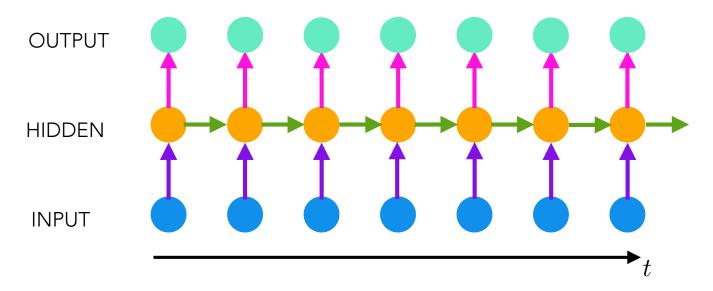
condition the generation of each pixel on a sequence of past pixels

MIDI music generation



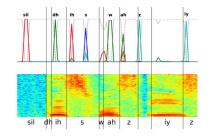
recapitulation

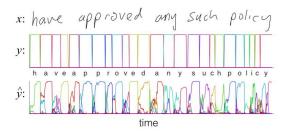
we can exploit sequential structure to impose inductive biases on the model

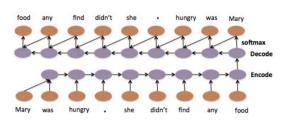


this limits the number of parameters required, reducing flexibility in reasonable ways

can then scale these models to complex data sets to perform difficult tasks







RECAP

recapitulation

we used additional priors (inductive biases) to scale deep networks up to handle spatial and sequential data

without these priors, we would need more parameters and data

we live in a **spatiotemporal** world

we are constantly getting sequences of spatial sensory inputs



embodied intelligent machines need to learn from spatial and temporal patterns

CNNs and RNNs are building blocks for machines that can use spatiotemporal data to solve tasks

