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Abstract. Fine-grained object recognition typically requires domain ex-
perts to provide class label annotations, making these labels difficult to
collect when experts are rare. Often, fine-grained classes can be orga-
nized into a visual class taxonomy according to shared visual features.
In this case, non-experts can easily distinguish between coarse classes,
allowing them to annotate examples at a coarse level. We show that by
supplementing a small set of expert labeled examples with a larger set
of non-expert labeled examples, one can significantly boost performance.
We also investigate methods of training using a visual taxonomy, show
the effectiveness of taxonomic learning in the context of self-learning, and
demonstrate methods of analyzing the model’s performance with regard
to the taxonomy.
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1 Introduction

The successes of deep convolutional neural networks have led to their widespread
adoption in the area of object recognition. With record-breaking performance
on large object recognition datasets, such as ImageNet, there has been a push to
develop more difficult object recognition tasks: more object categories, with more
similarity between categories [1]. A number of fine-grained object recognition
datasets have been introduced, in both natural [2–5] and non-natural [6–8] object
domains.

Collecting a fine-grained object dataset presents a unique challenge. Data
examples, while often still plentiful, are typically too difficult for Amazon Me-
chanical Turk annotators to accurately label. Untrained annotators are unfamil-
iar with class names and lack the expertise to distinguish between fine-grained
classes. Likewise, training annotators for a task of significant size, with many
fine-grained classes, can be prohibitively time-consuming and costly. One is then
left to rely on individuals with domain knowledge, such as field experts and
enthusiasts, to provide class label annotations [2]. This is not only costly, but
is in many cases infeasible due to the relatively small number of such individ-
uals. As the object recognition task becomes more fine-grained, collecting an
accurately labeled dataset becomes increasingly difficult. The result is a smaller



2 Joseph Marino

dataset, thereby limiting the performance of a model that is trained to perform
the desired task.

Fine-grained object classes, by definition, share many visual features: people
have torsos, limbs, and faces; buildings have walls, windows, and doors; and
cars have wheels, windshields, and lights. These shared visual features allow us
to group the fine-grained classes into coarse clusters. Particularly in biological
domains, which are the focus of many fine-grained object recognition tasks, these
coarse clusterings will tend to form a visual taxonomy of classes, for the most
part mirroring any underlying phylogenetic taxonomy. For instance, all birds
share certain visual features, all birds of prey share a more specific set of visual
features, and all hawks share an even more specific set of visual features.

(a) (b)

Fig. 1: Fine-grained object recognition attempts to distinguish between highly
visually similar object classes in a particular domain. Example domains include
(a) birds and (b) dogs. Labeling these examples requires extensive domain knowl-
edge, making it difficult to collect large annotated datasets for many domains.

By constructing a visual taxonomy, one can transform the fine-grained recog-
nition task into a series of coarse- to fine-grained recognition tasks, ranging in
difficulty. Coarse splittings near the root of the taxonomy can be easily distin-
guished by non-experts, whereas correctly distinguishing between branches near
the leaf level requires extensive domain knowledge. Depending on an annota-
tor’s level of expertise, he or she can now provide a class label annotation at
whichever level of the taxonomy that he or she feels most confident making a
classification. While not as informative as fine-grained labels, non-expert labels
nevertheless contain visually relevant information and in some cases, may be far
easier to collect. In this way, one can collect a fine-grained object recognition
dataset in which non-experts provide labels for a majority of the examples, with
experts labeling only a small subset. By training on both expert and non-expert
labels, one can substantially boost performance over using expert labels alone.

The main contributions of this work are as follows:
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1. We demonstrate the performance gains of using non-expert labeled examples
with a small set of expert labeled examples.

2. We compare two methods of taxonomic training: taxonomic curriculum learn-
ing and multi-task learning.

3. We show the effectiveness of taxonomic classifiers in the context of self-
learning in the case of very weakly labeled data.

We study the use of non-expert labels on the tasks of fine-grained recognition
of North American bird species and dog breeds. Assuming a visual taxonomy of
the classes exists, our overall method is independent of the specific fine-grained
task and should generalize to other fine-grained biological domains and many
non-biological domains as well.

2 Related Work

2.1 Taxonomic Classifiers

There has been considerable work in incorporating class taxonomies into multi-
class classification. This work started in the area of document classification,
where taxonomic versions of learning algorithms and loss functions were com-
bined with document taxonomies to aid in classification [9, 10]. The taxonomic
classifier review in [11] categorizes these approaches as either local or global. Lo-
cal approaches learn a classifier for each node or level of the taxonomy, whereas
global approaches build a classifier that operates across the entire taxonomy.
The method presented here is a local approach, though the technique of using
non-expert data is independent of the approach taken.

Recently, taxonomies have been applied to object recognition. Griffin, et al.
[12] introduced a method for learning taxonomies of object classes. When faced
with an image of an object for which the classifier is uncertain, the approach
taken in [13] trades off specificity for accuracy using a class taxonomy. Sfar, et
al. [14] present a method for using a taxonomy to return a set of fine-grained
classes that contain the correct class with high probability. In addition to learning
taxonomies, the approach in [15] uses a class taxonomy to impose a prior on
weights as a means for learning from few examples. Wang, et al. [16] take a
similar approach to our method, learning a classifier per level of the taxonomy.
Our method compliments theirs, as we incorporate further data at the coarse-
grained levels of the taxonomy. However, we note the importance of using a
visual taxonomy over a semantic or phylogenetic taxonomy.

2.2 Transfer Learning

When multiple tasks share some level of representation, the tasks can assist each
other through transfer learning. Since many natural images share low level fea-
tures with other natural images, transfer learning can be particularly helpful
in object recognition [17]. For instance, one can boost object recognition per-
formance substantially by training a network on ImageNet and fine-tuning the
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network for a related task with a smaller dataset [18]. This technique of us-
ing pre-trained models has facilitated dramatic performance improvements on
benchmark datasets that would otherwise be far too small to train an entire
deep convolutional network. During transfer learning, if the tasks are trained
concurrently, it is referred to as multi-task learning. As was pointed out in [19],
given a taxonomy of class labels, one can perform multi-task learning, with each
task being a classification at a different level in the taxonomy. We explore this
training approach in Sections 3 and 4.

2.3 Curriculum Learning

In curriculum learning, a model is trained on progressively more difficult exam-
ples, defined by some metric, as a non-convex optimization technique [20, 21].
We take inspiration from this technique, and formulate a taxonomic version of
curriculum learning. We train on progressively deeper levels of the taxonomy.
Instead of training first on easy examples, the model first trains on easy tasks,
separating coarse classes of objects. The motivation is that, perhaps by ordering
training in this sequential manner, a better final solution will be found.

2.4 Self-Learning

When faced with many unlabeled examples, one approach is to train a model on
a set of labeled examples, use the model to label the unlabeled examples, com-
bine the datasets, and train on the entire dataset. This form of semi-supervised
learning is referred to as self-learning [22]. In fine-grained object recognition,
where labels are relatively difficult to collect, harnessing unlabeled or weakly-
labeled examples from, for instance, Flickr, can have large potential gains. This
is the approach taken in [23].

3 Method

Fine-grained object classes, especially those found in the natural world, can often
be characterized by a visual taxonomic tree structure. The examples that we use
in the following sections are dogs and North American birds, but the overall
method is independent of the particular taxonomy. That is, we only assume that
a measure of visual similarity exists in the domain and that some fine-grained
classes are more visually similar than others. Our objectives are to (1) construct
a visual taxonomy and (2) train a model such that it can handle data and make
predictions at any level of the taxonomy.

3.1 Constructing a Visual Taxonomy

While methods exist for learning class taxonomies directly from data examples
[12, 15], we have taken the approach of constructing visual taxonomies manually.
Although more labor intensive, this approach guarantees that internal classes in
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the taxonomy are, at some level, visually–and often semantically–interpretable
to an annotator who is unfamiliar with the domain. This is a key consideration,
because in order to provide useful annotations, non-experts need to be able to
interpret and classify coarse-level classes. In contrast, a learned taxonomy is not
guaranteed to be visually interpretable to a non-expert, potentially making an-
notation more difficult. The outputs of a model trained with a non-interpretable
taxonomy will also be similarly difficult to interpret. Additionally, in biologi-
cal domains, phylogenetic taxonomies provide a convenient starting point for
manual taxonomy construction.

Fig. 2: Visual taxonomy of North American birds. Fine-grained classes are
grouped first by overall shape and form, then by color, and finally by specific
traits, such as patterns. The visual taxonomy roughly follows the phylogenetic
taxonomy of birds. The purpose of the taxonomy is to aid non-expert annotators
in labeling examples.

Given a phylogenetic taxonomy or even just a set of fine-grained classes,
how does one construct a visual taxonomy? Our approach consists of grouping
object classes first by overall shape and form, then color, and finally by specific
traits. This is shown in Figure 2. Though open to interpretation, for the dog
and bird taxonomies that we tested, this method resulted in coarse-level classes
that we believe roughly mirror how non-experts tend to classify these domains.
For instance, in classifying an unfamiliar bird, a non-expert might first describe
the overall type (duck, hummingbird, owl, etc.), then the color, and finally any
other peculiarities of the bird (patterns, eye color, bill shape, etc.). We make no
claims as to whether a taxonomy constructed in this manner is optimal, or even
desirable, for training a model. For our purposes, the objective of constructing
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the taxonomy is to provide a means for non-experts to easily distinguish between
groupings of fine-grained classes, allowing them to contribute their knowledge
toward the overall task.

Fig. 3: Phylogenetically similar classes are typically also visually similar. Certain
cases go against this rule, such as Mallard ducks. Female Mallard ducks are much
more visually similar to American Black ducks and Mottled ducks than male
Mallard ducks.

We offer three final thoughts for taxonomy construction. First, coarse-grained
classes should only be formed up to the point at which they are helpful to the
non-expert annotator. Grouping classes smaller and smaller until the root node
does not necessarily aid a non-expert. In addition, having coarse groups that do
not share a high degree of visual similarity may be detrimental to the training
process. The second point is that phylogenetic taxonomies should be followed
loosely. For instance, female Mallard ducks, although phylogenetically identical
to male Mallard ducks, are much more visually similar to American black ducks
and Mottled ducks (see Figure 3). It is often helpful to look at the common
names, as humans tend to give visually similar classes similar names. The House
sparrow, for example, is phylogenetically quite distant from all other sparrows,
however they have a similar appearance. The final point is that we are not
constrained to tree taxonomic structures. We prefer trees for the fact that fine-
grained labels automatically provide coarse-grained labels. They also represent
biological domains well.

3.2 Training

By incorporating a class taxonomy, our classifier is no longer constrained to pre-
dict and train with labels at only the fine-grained level. A variety of classifier
modifications can enable these capabilities. For instance, one can learn individ-
ual classifiers for each internal node in the taxonomy, or learn a classifier over
all classes in the taxonomy by defining some loss function using a taxonomic
distance measure between classes [11]. We have taken the approach of making
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distinct cuts progressively through the taxonomy, which we refer to as levels.
Some classes may appear in multiple levels, while other classes may not appear
in any. We then learn a classifier for each level. In the context of convolutional
networks, this has two main advantages: it supports batch processing and it
affords us the flexibility to separate out the different classifiers, allowing us to
learn different features that are relevant for classification at each level of the
taxonomy. With the levels of the taxonomy defining a set of similar, yet distinct
learning tasks, we can employ some form of transfer learning between them. This
is the power behind this approach; we can make up for a lack of data on the
fine-grained task by increasing the amount of data on the coarse-grained tasks.

Fig. 4: A class taxonomy comprised of three levels is shown on the bottom left.
All levels of the taxonomy are learned simultaneously during multi-task learning.
During taxonomic curriculum learning, the levels of the taxonomy are learned
sequentially. The model is trained on the first level of the taxonomy until con-
vergence, then trained on the second level and so on until the final level of the
taxonomy.

We are still left to decide how to train a model using this taxonomically-
defined set of tasks. The two approaches that we decided to investigate are
multi-task learning and what we refer to as taxonomic curriculum learning. In
multi-task learning, the network is trained on all of the tasks simultaneously.
We achieve this by adding multiple output layers to the network, one for each
task, so that, given an input example, the network produces a prediction at each
level of the taxonomy. During training, if an example does not have a label at a
particular level in the taxonomy, then there is no gradient contribution from the
corresponding output. In taxonomic curriculum learning, we train on each level
in sequential order: we train the network on the first level of the taxonomy until
convergence, then replace the output with a classifier for the second level and
repeat until we have reached the final, fine-grained level of the taxonomy. To
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produce predictions throughout the taxonomy, one can use the converged model
from each level. Both of these transfer learning methods require certain decisions
about hyper-parameters and network structure. For example, each task may have
a certain number of branching ‘private hidden layers’ [19], and loss contributions
from each task may be weighted differently. We did not thoroughly explore the
implications of these parameters, but hypothesize that they may further improve
these methods.

Neither of the previously mentioned learning methods enforce taxonomic
consistency between levels, but this can be added. This may be a desirable
property, especially when the classifiers at the fine-grained level are fairly weak.
Assuming that the tasks are progressively more difficult, when the fine-grained
classifier is faced with uncertainty over many different classes, it can then rely
on the output of the previous level to help guide its output. One can also set
thresholds for each level of the network based on some desired error rate. When
highly uncertain, this gives the model the opportunity to forgo a fine-grained
prediction in favor of a more coarse-grained prediction. This property is one of
the main advantages of taxonomic classifiers in general.

4 Experimental Results

4.1 Datasets and Taxonomies

We demonstrate our methods using two fine-grained datasets. The first is Stan-
ford Dogs [5], which contains 20,580 images of 120 classes of dogs. Each class
contains 100 training images of dogs at various ages and colors. The other dataset
is a collection of 76,613 images of 555 classes of North American birds compiled
from NABirds [2], CUB-200-2011 [3], and Birdsnap.1 There is an average of 95
images per class in the birds dataset.

For the dog and bird domains, defining their respective visual taxonomies
was fairly straightforward. Dogs are a single species, so we did not have a phy-
logenetic taxonomy to follow during visual taxonomy construction. Instead, we
grouped fine-grained classes with highly similar appearances (e.g. Collie and
Shetland Sheepdog) that a non-expert could easily confuse. These classes were
then grouped into somewhat visually similar groups (e.g. Doberman Pinscher
and Miniature Pinscher) that are distinguishable to most non-experts. Some of
these classes are semantically interpretable (e.g. Poodle), while others are based
on visual traits (e.g. White Wolf-Like). The resulting taxonomy has three levels,
with 35, 72, and 120 classes at each level. The birds domain has a phylogenetic
taxonomy, which, for the most part, follows the visual taxonomy well. A ma-
jority of the effort in creating the visual taxonomy was spent separating out
fine-grained classes (e.g. juveniles from adults, males from females, etc.) and
finding coarse classes for species that are phylogenetically highly unique. For
example, Belted Kingfishers are the only bird from their phylogenetic order in
the dataset, but to a non-expert, they are somewhat visually similar to other

1 http://birdsnap.com
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small birds. The visual taxonomy for birds has four levels, with 17, 130, 241,
and 555 classes at each level.

4.2 Comparison of Training Methods

We compared the performance of multi-task learning and taxonomic curriculum
learning using the birds dataset. The size of this dataset is atypical of the amount
of data available for many real world fine-grained domains. A researcher creating
a vision system for an obscure domain may only have access to a handful of expert
labeled images per class. For this reason, we selected a subset containing 4,995
images (9 images per class) from our 52,701 training images as our more ‘realistic’
dataset. We tested both learning approaches in three different settings: 4,995
expert labeled examples, 52,701 expert labeled examples, and a partitioning
of our dataset into 47,706 non-expert labeled images and 4,995 expert labeled
images. Non-expert labeled images have coarse labels at the second level of the
taxonomy, whereas expert labeled images have fine-grained labels at the fourth
taxonomic level. Each model was trained by re-initializing the loss layers in a
pre-trained GoogLeNet [24] network and fine-tuning the entire network. The
results are shown in Figure 5.

(a) (b) (c)

Fig. 5: Comparison of multi-task learning and taxonomic curriculum learning
using (a) 4,995 expert labeled images, (b) 52,701 expert labeled images, and (c)
47,706 non-expert labeled images and 4,995 expert labeled images. Multi-task
learning barely beats taxonomic curriculum learning when labels are entirely at
the fine-grained level. When there are many more coarse-grained examples than
fine-grained examples, taxonomic curriculum learning outperforms multi-task
learning.

Multi-task learning slightly outperformed taxonomic curriculum learning on
all levels of the taxonomy when training with only expert labeled data. When
training with many more non-expert labels than expert labels, multi-task learn-
ing performed noticeably worse than taxonomic curriculum learning. Although
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not shown, when the data sampling rate for multi-task learning was set uniformly,
it performed substantially worse. The data shown in Figure 5c is from using
expert-heavy sampling. Without extensively adjusting the network architecture
or hyper-parameters, it is difficult to assess the generality of these findings. For
our purposes, the important point is that taxonomic curriculum learning is more
stable when dealing with labels distributed unequally across the taxonomy.

4.3 Performance Gains from Non-expert Data

Figures 5 (a) and (c) illustrate our main point: supplementing a small set of
expert labeled data with a much larger set of non-expert labeled data can result
in a substantial improvement in performance, measured in accuracy at the fine-
grained level. The exact values are given in Table 1.

Table 1: Accuracy at the fine-grained level of the birds taxonomy using different
amounts of expert and non-expert labeled training data. Supplementing the sub-
set of 4,995 expert labeled images with an additional 47,706 non-expert labeled
images results in a 6.1% increase in fine-grained accuracy.

Labels Accuracy (%)

52,701 Expert 69.1

4,995 Expert 41.8

47,706 Non-Expert and 4,995 Expert 47.9

We explored this further using the Stanford Dogs dataset. We selected subsets
of 5, 10, and 50 images from the 100 images for each class. These subsets are
our expert labeled training sets, with labels at level 3 of the dog taxonomy. We
trained models using all 100 images with non-expert labels at either the first
or second level of the taxonomy in combination with each of the subsets. For
comparison, we also trained models using only the expert labeled subsets. The
fine-grained accuracy of these models is plotted in Figure 6. Increasing the ratio
of non-expert labels to expert labels leads to a larger gain in performance. The
plot also portrays the relative information contained in the labels at each level.
For a fixed number of expert labeled examples, training with non-expert labels
at level 2 is better than training with the same amount of non-expert labels at
level 1, as should be expected. However, training with only 10 expert labels per
class outperforms training with 5 expert labels and 95 level 2 non-expert labels
per class.

Determining the relative information contained in labels at each level is an
important consideration when trying to minimize annotation costs. From an-
alyzing the dog and bird domains, we have found that for a given amount of
additional expert labeled data, one typically requires an order of magnitude
more non-expert labeled data to achieve the same performance improvement. Of
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Fig. 6: Left: Fine-grained accuracy on the Stanford Dogs dataset as a function of
the number of expert labeled examples used during training. The total number of
images is kept fixed at 100 images per class. The three curves represent different
types of non-expert labels. Right: Sample labels from each level of the taxonomy.

course, there may be a limit to this improvement. Collecting large amounts of
non-expert labeled data can be daunting, but in certain domains, where online
communities of non-experts exist, it may be possible to collect these examples
at virtually no cost.

4.4 Taxonomic Self-Learning with Weak Labels

One can also increase the number of examples using self-learning. This entails
using the trained model to label a set of unlabeled or weakly-labeled examples,
then adding them to the training set for further learning. A taxonomic classifier
adds an extra element, as we are now able to label examples up to different
levels. We use the birds dataset to demonstrate this, training initially on 4,995
expert labeled images.

We gathered an additional 100,000 images from Flickr by querying the sci-
entific names of each bird species in the dataset. Some of these images are mis-
labeled as other classes, while others do not contain a class from the dataset.
Bird enthusiasts, for the most part, though, are quite adept at correctly labeling
their images. We estimated at least half of the images had correct fine-grained
labels. Our goal is to study self-learning in the context of very noisy labels due
to non-experts. We expect that this may be more common in obscure domains.
Therefore, we add additional noise to the labels by probabilistically mislabel-
ing the examples according to the taxonomy. In addition to the noise already
inherent in the dataset, for levels of the taxonomy, we set respective probabili-
ties of 1%, 5%, 15%, and 75% for being mislabeled, an arbitrary approximation
of a non-expert’s error rate. Incorrect labels were chosen randomly from the
corresponding level and propagated randomly down the taxonomy.

We used our model to generate predictions at each level of the taxonomy.
Examples were accepted if (1) the prediction matched the weak label and (2)



12 Joseph Marino

Fig. 7: The taxonomic self-learning pipeline. We further corrupt the labels of
weakly labeled images from Flickr. The images are then run through the initial
model, generating taxonomic predictions. If the prediction at a particular level
is consistent and matches the weak label, the image is added to the training set.

the prediction was consistent with previous levels of the taxonomy. A separate
set of examples were collected using only the model’s fine-grained prediction.
Table 2 contains the number of weakly labeled images added at each level of
the taxonomy. Note that the fine-grained training set contains more level 4 im-
ages than the taxonomic training set. We then trained two models: one using
the taxonomic labels and another using only the fine-grained labels. The taxo-
nomic model outperformed the fine-grained model, 46.5% to 44.6%. These are
improvements of 4.7% and 2.8% respectively over the base model’s accuracy of
41.8%.

The key point is this: when we assume that weakly labeled data is mislabeled
progressively worse at deeper levels of the taxonomy, a taxonomic approach
to self-learning can acquire more labels, outperforming a purely fine-grained
approach. When the labels are not very noisy, or the noise does not increase
through the taxonomy, then standard fine-grained self-learning works just as
well.

Table 2: Weakly labeled images added to the training set (cumulatively) at each
level of the taxonomy. A total of 100,000 weakly labeled images were tested.
More images were added at level 4 to the fine-grained training set than the
taxonomic training set due to the consistency constraint.

Level Number of Images Added

1 78,706

2 50,065

3 30,446

4 5,490

4 (Fine-Grained Only) 7,088
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4.5 Coarse-Grained Classes

Organizing fine-grained object classes into a visual taxonomy allows us to work
with a set of coarse-grained classes. These classes provide a new level of insight in
analyzing the model’s performance. We can assess the accuracy of coarse-grained
classes to get a broad sense of where the model is making mistakes. Figure 8
gives an example of this analysis. At the first level of the taxonomy, we start with
the class for all birds of prey. Splitting this class into its constituent classes, we
observe the distribution of accuracies. After repeating this process, we see that
the class ‘Dark Brown Hawk’ is substantially underperforming. Among other
factors, this could be the result of a flawed visual taxonomy.

Fig. 8: Example analysis of coarse class accuracies. We start with the coarse class
‘Bird of Prey’ at the first level of the taxonomy. By splitting this class into its
constituent classes, we can see which classes are dragging down performance.
We repeat this at each taxonomic level. The coarse class ‘Dark Brown Hawk’
is underperforming significantly with respect to its siblings. This may suggest a
flaw in the visual taxonomy.

To help determine possible flaws in the taxonomy, we can plot coarse class
accuracies for a fine-grained class. For a specific fine-grained class, we determine
what percentage of examples from that class were correctly labeled at each level
of the taxonomy. We then can compare these percentages against the total accu-
racies for those coarse classes. Figure 9 gives a concrete example. The fine-grained
class for Tricolored Heron seems well situated in the visual taxonomy. Its coarse-
grained accuracies track well with other members of its coarse classes, and the
accuracies remain fairly high throughout. Compare this with the fine-grained
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class Black Scoter (Female/Juvenile). Examples from this class are correctly
classified as ‘Duck, Goose, Swan’ and ‘Duck’, but the model has a particularly
difficult time classifying them as ‘Scoter’ as compared with other scoters. This
suggests that the class Black Scoter (Female/Juvenile) should be moved else-
where in the taxonomy, or perhaps the class ‘Scoter’ should be split. A similar
phenomenon takes place with the class Lesser Goldfinch (Female/Juvenile).

Fig. 9: Accuracies throughout the visual taxonomy for three representative fine-
grained classes. Red dots denote the accuracy of all descendants from the cor-
responding coarse class. Blue dots denote accuracy from only the fine-grained
class. For example, the red dot for finch indicates what percentage of finches were
correctly classified as such. The blue dot indicates what percentage of Lesser
Goldfinch Females/Juveniles were correctly classified as finches.

5 Conclusion

Visual taxonomies allow for the possibility of using non-expert labels for fine-
grained object recognition. These labels are relatively easy to collect, and when
combined with a small number of expert labels, can result in significant per-
formance gains. We investigated two methods of taxonomic training, but much
work remains to be done in this area. Taxonomic training methods work well
when labels at different levels are able to assist each other, but if these tasks
are directly competing for parameters in the network, performance can suffer.
This is the motivation for private hidden layers for each task, which we did not
explore. Each task could have a branch in the network, allowing for separate rep-
resentations of each taxonomic level. Work also remains to be done in defining
alternative class structures. Our method is not entirely confined to taxonomic
tree structures; other coarse clusterings of classes could work as well. For object
domains like food, this may be a more representative structure.
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