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Abstract

We introduce the variational filtering EM algorithm, a simple, general-purpose
method for performing variational inference in dynamical latent variable models
using information from only past and present variables, i.e. filtering. The algorithm
is derived from the variational objective in the filtering setting and consists of an op-
timization procedure at each time step. By performing each inference optimization
procedure with an iterative amortized inference model, we obtain a computationally
efficient implementation of the algorithm, which we call amortized variational
filtering. We present experiments demonstrating that this general-purpose method
improves performance across several deep dynamical latent variable models.

1 Introduction

Complex tasks with time-series data, like audio comprehension or robotic manipulation, must often
be performed online, where the model can only consider past and present information. Models for
such tasks, e.g. Hidden Markov Models, frequently operate by inferring the hidden state of the world
at each time-step. This type of online inference procedure is known as filtering. Learning filtering
models purely through supervised labels or rewards can be impractical, requiring massive collections
of labeled data or significant efforts at reward shaping. In contrast, generative models can learn
and infer hidden structure and states directly from data. Deep latent variable models [19, 28, 38],
in particular, offer a promising direction; they infer latent representations using expressive deep
networks, commonly using variational methods to perform inference [25]. Recent works have
extended deep latent variable models to the time-series setting, e.g. [7, 13]. However, inference
procedures for these dynamical models have been proposed on the basis of intuition rather than from
a rigorous inference optimization perspective, potentially limiting performance.

We introduce variational filtering EM, an algorithm for performing filtering variational inference and
learning that is rigorously derived from the variational objective. As detailed below, the variational
objective in the filtering setting results in a sequence of inference optimization objectives, with
one at each time-step. By initializing each of these inference optimization procedures from the
corresponding prior distribution, a classic Bayesian prediction-update loop naturally emerges. This
contrasts with existing filtering approaches for deep dynamical models, which use inference models
that do not explicitly account for prior predictions during inference. However, using iterative inference
models [33], which overcome this limitation, we develop a computationally efficient implementation
of the variational filtering EM algorithm, which we refer to as amortized variational filtering (AVF).

The main contributions of this paper are the variational filtering EM algorithm and its amortized
implementation, AVF. This general-purpose filtering algorithm is widely applicable to dynamical
latent variable models, as we demonstrate in our experiments. Moreover, the variational filtering EM
algorithm is derived from the filtering variational objective, providing a solid theoretical framework
for filtering inference. By precisely specifying the inference optimization procedure, this method
takes a simple form compared to previous hand-designed methods. Using several deep dynamical
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latent variable models, we demonstrate that this filtering approach compares favorably against current
methods across a variety of benchmark sequence data sets.

2 Background

Section 2.1 provides the general form of a dynamical latent variable model. Section 2.2 covers
variational inference. Deep latent variable models are often trained efficiently by amortizing inference
optimization (Section 2.3). Applying this technique to dynamical models is non-trivial, leading many
prior works to use hand-designed amortized inference methods (Section 2.4).

2.1 Dynamical latent variable models

A sequence of T observations, x≤T , can be modeled using a dynamical latent variable model,
pθ(x≤T , z≤T ), which models the joint distribution between x≤T and a sequence of latent variables,
z≤T , with parameters θ. It is typically assumed that pθ(x≤T , z≤T ) can be factorized into conditional
joint distributions at each step, pθ(xt, zt|x<t, z<t), which are conditioned on preceding variables.
This results in the following auto-regressive formulation:

pθ(x≤T , z≤T ) =

T∏
t=1

pθ(xt, zt|x<t, z<t) =
T∏
t=1

pθ(xt|x<t, z≤t)pθ(zt|x<t, z<t). (1)

pθ(xt|x<t, z≤t) is the observation model, and pθ(zt|x<t, z<t) is the dynamics model, both of which
can be arbitrary functions of their conditioning variables. However, while Eq. 1 provides the general
form of a dynamical latent variable model, further assumptions about the dependency structure, e.g.
Markov, or functional forms, e.g. linear, are often necessary for tractability.

2.2 Variational inference

Given a model and a set of observations, we typically want to infer the posterior for each sequence,
p(z≤T |x≤T ), and learn the model parameters, θ. Inference can be performed online or offline through
Bayesian filtering or smoothing respectively [39], and learning can be performed through maximum
likelihood estimation. Unfortunately, inference and learning are intractable for all but the simplest
model classes. For non-linear functions, which are present in deep latent variable models, we must
resort to approximate inference. Variational inference [25] reformulates inference as optimization by
introducing an approximate posterior, q(z≤T |x≤T ), then minimizing the KL-divergence to the true
posterior, p(z≤T |x≤T ). To avoid evaluating p(z≤T |x≤T ), one can express the KL-divergence as

DKL(q(z≤T |x≤T )||p(z≤T |x≤T )) = log pθ(x≤T ) + F , (2)

where F is the variational free energy, also referred to as the (negative) evidence lower bound or
ELBO, defined as

F ≡ −Eq(z≤T |x≤T )

[
log

pθ(x≤T , z≤T )

q(z≤T |x≤T )

]
. (3)

In Eq. 2, log pθ(x≤T ) is independent of q(z≤T |x≤T ), so one can minimize the KL-divergence to
the true posterior, thereby performing approximate inference, by minimizing F w.r.t. q(z≤T |x≤T ).
Further, as KL-divergence is non-negative, Eq. 2 implies that free energy upper bounds the negative
log likelihood. Therefore, upon minimizing F w.r.t. q(z≤T |x≤T ), one can use the gradient ∇θF to
learn the model parameters. These two optimization procedures are respectively the expectation and
maximization steps of the variational EM algorithm [35], which alternate until convergence. To scale
this algorithm, stochastic gradients can be used for both inference [36] and learning [22].

2.3 Amortized variational inference

Performing inference optimization using conventional stochastic gradient descent techniques can be
computationally demanding, potentially requiring many inference iterations. To increase efficiency, a
separate inference model can learn to map data examples to approximate posterior estimates [9, 19,
28, 38], thereby amortizing inference across examples [17]. Denoting the distribution parameters of
q as λq (e.g. Gaussian mean and variance), standard inference models take the form

λq ← fφ(x), (4)
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where the inference model is denoted as f with parameters φ. These models, though efficient, have
limitations. Notably, because these models only receive the data as input, they are unable to account
for empirical priors, which occur from one latent variable to another. Such priors arise in the dynamics
of dynamical models, forming priors across time steps, as well as in hierarchical models, forming
priors across levels. Previous works have neglected to include empirical priors during inference,
attempting to overcome this limitation through heuristics, like “top-down” inference in hierarchical
models [41] and recurrent inference models in dynamical models, e.g. [7].

Iterative inference models [33] directly account for these priors, instead performing inference opti-
mization by iteratively encoding approximate posterior estimates and gradients:

λq ← fφ(λ
q,∇λqF). (5)

The gradients, ∇λqF , can be estimated through black box methods [36] or the reparameterization
trick [28, 38] when applicable. Analogously to learning to learn [1], iterative inference models learn
to perform inference optimization, thereby learning to infer. Eq. 5 provides a viable encoding form
for an iterative inference model, but other forms, such as additionally encoding the data, x, can
potentially lead to faster inference convergence. Empirically, iterative inference models have also
been shown to yield improved modeling performance over comparable standard models [33].

2.4 Related work

Many deterministic deep dynamical latent variable models have been proposed for sequential data
[6, 42, 31, 11]. While these models often capture many aspects of the data, they cannot account for the
uncertainty inherent in many domains, typically arising from partial observability of the environment.
By averaging over multi-modal distributions, these models often produce samples in regions of low
probability, e.g. blurry video frames. This inadequacy necessitates moving to probabilistic models,
which can explicitly model uncertainty to accurately capture the distribution of possible sequences.

Amortized variational inference [28, 38] has enabled many recently proposed probabilistic deep
dynamical latent variable models, with applications to video [44, 27, 45, 24, 16, 12, 3, 10, 30, 20],
speech [7, 13, 18, 23, 30], handwriting [7], music [13], etc. While these models differ in their
functional mappings, most fall within the general form of Eq. 1. Crucially, simply encoding the
observation at each step is insufficient to accurately perform approximate inference, as the prior can
vary across steps. Thus, with each model, a hand-crafted amortized inference procedure has been
proposed. For instance, many filtering inference methods re-use various components of the generative
model [7, 13, 16, 10], while some methods introduce separate recurrent neural networks into the
filtering procedure [4, 10] or encode the previous latent sample [27]. Specifying a filtering method
has been an engineering effort, as we have lacked a theoretical framework.

The variational filtering EM algorithm precisely specifies the inference optimization procedure
implied by the filtering variational objective. The main insight from this analysis is that, having drawn
approximate posterior samples at previous steps, inference becomes a local optimization, depending
only on the current prior and observation. This suggests one unified approach that explicitly performs
inference optimization at each step, replacing the current collection of custom filtering methods.
When the approximate posterior at each step is initialized at the corresponding prior, this approach
entails a Bayesian prediction-update loop, with the update composed of a gradient (error) signal.

Perhaps the closest technique in the probabilistic modeling literature is the “residual" inference
method from Fraccaro et al. [13], which updates the approximate posterior mean from the prior.
Similar ideas have been proposed on an empirical basis for deterministic models [31, 21]. PredNet
[31] is a deterministic model that encodes prediction errors to perform inference. This approach is
inspired by predictive coding [37, 14], a theory from neuroscience that postulates that feedforward
pathways in sensory processing areas of the brain use prediction errors to update state estimates from
prior predictions. In turn, this theory is motivated by classical Bayesian filtering [39], which updates
the posterior from the prior using the likelihood of the prediction. For linear Gaussian models, this
manifests as the Kalman filter [26], which uses prediction errors to perform exact inference.

Finally, several recent works have used particle filtering in conjunction with amortized inference to
provide a tighter lower bound on the log likelihood for sequential data [32, 34, 29]. The techniques
developed here can also be applied to this tighter bound.
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Figure 1: Variational filtering EM. The diagram shows filtering inference within a dynamical latent
variable model, as outlined in Algorithm 1. The central gray region depicts inference optimization
of the approximate posterior, q(zt|x≤t, z<t), at step t, which can be initialized at or near the corre-
sponding prior, pθ(zt|x<t, z<t). Sampling from the approximate posterior generates the conditional
likelihood, pθ(xt|x<t, z≤t), which is evaluated at the observation, xt, to calculate the reconstruction
error. This term is combined with the KL divergence between the approximate posterior and prior,
yielding the step free energy, Ft (Eq. 9). Inference optimization (E-step) involves finding the approx-
imate posterior that minimizes the step free energy terms. Learning (M-step), which is not shown,
corresponds to updating the model parameters, θ, to minimize the total free energy, F .

3 Variational filtering

Section 3.1 describes variational filtering EM (Algorithm 1), a general algorithm for performing
filtering variational inference in dynamical latent variable models. In Section 3.2, we introduce a
method for amortizing inference optimization using iterative inference models.

3.1 Variational filtering expectation maximization (EM)

In the filtering setting, the approximate posterior at each step is conditioned only on information
from past and present variables, enabling online approximate inference. This implies a structured
approximate posterior, in which q(z≤T |x≤T ) factorizes across steps as

q(z≤T |x≤T ) =
T∏
t=1

q(zt|x≤t, z<t). (6)

Note that the conditioning variables in each term of q denote an indirect dependence that arises
through free energy minimization and does not necessarily constitute a direct functional mapping.
Under a filtering approximate posterior, the free energy (Eq. 3) can be expressed as

F =

T∑
t=1

E∏t−1
τ=1 q(zτ |x≤τ ,z<τ )

[Ft] =
T∑
t=1

F̃t, (7)

(see Appendix A for the derivation) where Ft is the step free energy, defined as

Ft ≡ −Eq(zt|x≤t,z<t)

[
log

pθ(xt, zt|x<t, z<t)
q(zt|x≤t, z<t)

]
, (8)
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Algorithm 1 Variational Filtering Expectation Maximization

1: Input: observation sequence x1:T , model pθ(x1:T , z1:T )
2: ∇θF = 0 . parameter gradient
3: for t = 1 to T do
4: initialize q(zt|x≤t, z<t) . at/near pθ(zt|x<t, z<t)
5: F̃t := Eq(z<t|x<t,z<t−1) [Ft]
6: q(zt|x≤t, z<t) = argminq F̃t . inference (E-Step)
7: ∇θF = ∇θF +∇θF̃t
8: end for
9: θ = θ − α∇θF . learning (M-Step)

and we have also defined F̃t as the tth term in the summation. Note that with a single step, the filtering
free energy reduces to the first step free energy, thereby recovering the static case. As in this setting,
the step free energy can be re-expressed as a reconstruction term and a KL-divergence term:

Ft = −Eq(zt|x≤t,z<t) [log pθ(xt|x<t, z≤t)] +DKL(q(zt|x≤t, z<t)||pθ(zt|x<t, z<t)). (9)

The filtering free energy in Eq. 7 is the sum of these step free energy terms, each of which is evaluated
according to expectations over past latent sequences. To perform filtering variational inference, we
must find the set of T terms in q(z≤T |x≤T ) that minimize the filtering free energy summation.

We now describe the variational filtering EM algorithm, given in Algorithm 1 and depicted in Figure
1, which optimizes Eq. 7. This algorithm sequentially optimizes each of the approximate posterior
terms to perform filtering inference. Consider the approximate posterior at step t, q(zt|x≤t, z<t).
This term appears in F , either directly or in expectations, in terms t through T of the summation:

F = ︸ ︷︷ ︸
steps on which q(zt|x≤t, z<t) depends

F̃1 + F̃2 + · · ·+ F̃t−1 +

terms in which q(zt|x≤t, z<t) appears︷ ︸︸ ︷
F̃t + F̃t+1 + · · ·+ F̃T−1 + F̃T . (10)

However, the filtering setting dictates that the optimization of the approximate posterior at each step
can only condition on past and present variables, i.e. steps 1 through t. Therefore, of the T terms in
F , the only term through which we can optimize q(zt|x≤t, z<t) is the tth term:

q∗(zt|x≤t, z<t) = argmin
q(zt|x≤t,z<t)

F̃t. (11)

Optimizing F̃t requires evaluating expectations over previous approximate posteriors. Again, because
approximate posterior estimates cannot be influenced by future variables, these past expectations
remain fixed through the future. Thus, variational filtering (the variational E-step) can be performed
by sequentially minimizing each Ft w.r.t. q(zt|x≤t, z<t), holding the expectations over past variables
fixed. Conveniently, once the past expectations have been evaluated, inference optimization is entirely
defined by the free energy at that step.

For simple models, such as linear Gaussian models, these expectations may be computed exactly.
However, in general, the expectations must be estimated through Monte Carlo samples from q,
with inference optimization carried out using stochastic gradients [36]. As in the static setting,
we can initialize q(zt|x≤t, z<t) at (or near) the prior, pθ(zt|x<t, z<t). This yields a simple inter-
pretation: starting with q at the prior, we generate a prediction of the data through the likelihood,
pθ(xt|x<t, z≤t), to evaluate the current step free energy. Using the approximate posterior gradient,
we then perform an inference update to the estimate of q. This resembles classical Bayesian filtering,
where the posterior is updated from the prior prediction according to the likelihood of observations.
Unlike the classical setting, reconstruction and update steps are repeated until inference convergence.

After inferring an optimal approximate posterior, learning (the variational M-step) can be performed
by minimizing the total filtering free energy w.r.t. the model parameters, θ. As Eq. 7 is a summation
and differentiation is a linear operation, ∇θF is the sum of contributions from each of these terms:

∇θF =

T∑
t=1

∇θ
[
E∏t−1

τ=1 q(zτ |x≤τ ,z<τ )
[Ft]

]
. (12)

5



Parameter gradients can be estimated online by accumulating the result from each term in the filtering
free energy. The parameters are then updated at the end of the sequence. For large data sets, stochastic
estimates of parameter gradients can be obtained from a mini-batch of data examples [22].

3.2 Amortized variational filtering

Performing approximate inference optimization (Algorithm 1, Line 6) with traditional techniques can
be computationally costly, requiring many iterations of gradient updates and hand-tuning of optimizer
hyper-parameters. In online settings, with large models and data sets, this may be impractical. An
alternative approach is to employ an amortized inference model, which can learn to minimize Ft w.r.t.
q(zt|x≤t, z<t) more efficiently at each step. Note that Ft (Eq. 8) contains pθ(xt, zt|x<t, z<t) =
pθ(xt|x<t, z≤t)pθ(zt|x<t, z<t). The prior, pθ(zt|x<t, z<t), varies across steps, constituting the
latent dynamics. Standard inference models, which only encode xt, do not have access to the prior
and therefore cannot properly optimize q(zt|x≤t, z<t). Many inference models in the sequential
setting attempt to account for this information by including hidden states, e.g. [7, 13, 10]. However,
given the complexities of many generative models, it can be difficult to determine how to properly
route the necessary prior information into the inference model. As a result, each dynamical latent
latent variable model has been proposed with an accompanying custom inference model set-up.

We propose a simple and general alternative method for amortizing filtering inference that is agnostic
to the particular form of the generative model. Iterative inference models [33] naturally account for
the changing prior through the approximate posterior gradients. These models are thus a natural
candidate for performing inference at each step. Similar to Eq. 5, when q(zt|x≤t, z<t) is a parametric
distribution with parameters λqt , the inference update takes the form:

λqt ← fφ(λ
q
t ,∇λqt

F̃t). (13)

We refer to this set-up as amortized variational filtering (AVF). As in Eq. 5, we note that Eq. 13
offers just one particular encoding form for an iterative inference model. For instance, xt could be
additionally encoded at each step. Marino et al. also note that in latent Gaussian models, precision-
weighted errors provide an alternative inference optimization signal [33]. There are two main benefits
to using iterative inference models in the filtering setting:

• The approximate posterior is updated from the prior, so model capacity is utilized for
inference corrections rather than re-estimating the approximate posterior at each step.

• These inference models contain all of the terms necessary to perform inference optimization,
providing a simple model form that does not require any additional hidden states or inputs.

In practice, these advantages permit the use of relatively simple iterative inference models that can
perform filtering inference efficiently and accurately. We demonstrate this in the following section.

4 Experiments

We empirically evaluate amortized variational filtering using multiple deep dynamical latent Gaussian
model architectures on a variety of sequence data sets. Specifically, we use AVF to train VRNN
[7], SRNN [13], and SVG [10] on speech [15], music [5], and video [40] data. In each setting,
we compare AVF against the originally proposed filtering method for the model. Diagrams of the
filtering methods are shown in Figure 2. Implementations of the models are based on code provided
by the respective authors of VRNN1, SRNN2, and SVG3. Accompanying code can be found online at
github.com/joelouismarino/amortized-variational-filtering.

4.1 Experiment set-up

Iterative inference models are implemented as specified in Eq. 13, encoding the approximate posterior
parameters and their gradients at each inference iteration at each step. Following [33], we normalize
the inputs to the inference model using layer normalization [2]. The generative models that we

1https://github.com/jych/nips2015_vrnn
2https://github.com/marcofraccaro/srnn
3https://github.com/edenton/svg
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(a) VRNN (b) SRNN (c) SVG (d) AVF

Figure 2: Filtering inference models for VRNN, SRNN, SVG, and AVF. Each diagram shows the
computational graph for inferring the approximate posterior parameters, λq, at step t. Previously
proposed methods rely on hand-crafted architectures of observations, hidden states, and latent
variables. AVF is a simple, general filtering procedure that only requires the local inference gradient.

evaluate contain non-spatial latent variables, thus, we use fully-connected layers to parameterize the
inference models. Importantly, minimal effort went into engineering the inference model architectures:
across all models and data sets, we utilize the same inference model architecture for AVF. Further
details are found in Appendix B.

4.1.1 Speech modeling
Observation

Model Output
Iteration 0

Iteration 1
Model Output

Figure 3: Test data (top), output predictions (middle), and
reconstructions (bottom) for TIMIT using SRNN with AVF.
Sequences run from left to right. The predictions made by
the model already contain the general structure of the data.
AVF explicitly updates the approximate posterior from the
prior prediction, focusing on inference corrections rather
than re-estimation.

Models For speech modeling, we
use VRNN and SRNN, attempting to
keep the model architectures consis-
tent with the original implementations.
The most notable difference in our im-
plementation occurs in SRNN, where
we use an LSTM rather than a GRU
as the recurrent module. As in [13],
we anneal the KL divergence initially
during training. In both models, we
use a Gaussian output density. Un-
like [7, 13, 18], which evaluate log
densities, we evaluate and report log
probabilities by integrating the out-
put density over the data discretization
window, as in modeling image pixels.
This permits comparison across differ-
ent output distributions.

Data We train and evaluate on TIMIT [15], which consists of audio recordings of 6,300 sentences
spoken by 630 individuals. As performed in [7], we sample the audio waveforms at 16 kHz, split
the training and validation sets into half second clips, and group each sequence into bins of 200
consecutive samples. Thus, each training and validation sequence consists of 40 model steps.
Evaluation is performed on the full duration of each test sequence, averaging roughly 3 seconds.

4.1.2 Music modeling

Model We model polyphonic music using SRNN. The generative model architecture is the same as
in the speech modeling experiments, with changes in the number of layers and units to match [13].
To model the binary music notes, we use a Bernoulli output distribution. Again, we anneal the KL
divergence initially during training.

Data We use four data sets of polyphonic (MIDI) music [5]: Piano-midi.de, MuseData, JSB
Chorales, and Nottingham. Each data set contains between 100 and 1,000 songs, with each song
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Figure 4: Improvement with inference iterations. Results are shown on the TIMIT validation set
using VRNN with AVF. (a) Average free energy per step with varying numbers of inference iterations
during training. Additional iterations tend to result in improved performance. (b) Average relative
improvement in free energy from the initial (prior) estimate at each inference iteration for a single
model. Empirically, each successive iteration provides further, smaller improvements.

between 100 to 4,000 steps. For training and validation, we break the sequences into clips of length
25, and we test on the entire test sequences.

4.1.3 Video modeling

Model Our implementation of SVG differs from the original model in that we evaluate conditional
log-likelihood under a Gaussian output density rather than mean squared output error. All other
architecture details are identical to the original model. However, [10] down-weight the KL-divergence
by a factor of 1e-6 at all steps. We instead remove this factor to use the free energy during training
and evaluation. As to be expected, this results in the model using the latent variables to a lesser extent.
We train and evaluate SVG using filtering inference at all steps, rather than predicting multiple steps
into the future, as in [10].

Data We train and evaluate SVG on KTH Actions [40], which contains 760 train / 768 val / 863
test videos of people performing various actions, each of which is between roughly 50 – 150 frames.
Frames are re-sized to 64 × 64. For training and validation, we split the data into clips of 20 frames.

4.2 Results

4.2.1 Additional Inference Iterations

The variational filtering EM algorithm involves inference optimization at each step (Algorithm 1,
Line 6). AVF optimizes each approximate posterior through a model that learns to perform iterative
updates (Eq. 13). Additional inference iterations may lead to further improvement in performance
[33]. We explore this aspect on TIMIT using VRNN. In Figure 4a, we plot the average free energy
per step on validation sequences for models trained with varying numbers of inference iterations.
Figure 4b shows average relative improvement over the prior estimate for a single model trained with
8 inference iterations. We observe that training with additional inference iterations empirically leads
to improved performance (Figure 4a), with each iteration providing diminishing improvement during
inference (Figure 4b). This aspect is distinct from many baseline filtering methods, which directly
output the approximate posterior at each step.

We can also directly visualize inference improvement through the model output. Figure 3 illustrates
example reconstructions over inference iterations, using SRNN on TIMIT. At the initial inference
iteration, the approximate posterior is initialized from the prior, resulting in an output prediction.
The iterative inference model then uses the approximate posterior gradients to update the estimate,
improving the output reconstruction.
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Table 1: Average free energy per step (in nats)
on the TIMIT speech data set for SRNN and
VRNN with the respective originally proposed
filtering procedures (baselines) and with AVF.

TIMIT
VRNN

baseline 1,082
AVF 1,105

SRNN
baseline 1,026
AVF 1,024

Table 2: Average free energy per step (in nats)
on the KTH Actions video data set for SVG
with the originally proposed filtering procedure
(baseline) and with AVF.

KTH Actions
SVG

baseline 15,097
AVF 11, 714

Table 3: Average free energy per step (in nats) on polyphonic music data sets for SRNN with and
without AVF. Results from Fraccaro et al. [13] are provided for comparison, however, our model
implementation differs in several aspects (see Appendix B).

Piano-midi.de MuseData JSB Chorales Nottingham
SRNN

baseline [13] 8.20 6.28 4.74 2.94
baseline 8.19 6.27 6.92 3.19
AVF 8.12 5.99 6.97 3.13

4.2.2 Quantitative Comparison

Tables 1, 2, and 3 present quantitative comparisons of average filtering free energy per step between
AVF (with 1 inference iteration per step) and baseline filtering methods for TIMIT, KTH Actions,
and the polyphonic music data sets respectively. On TIMIT, training with AVF performs comparably
to the baseline methods for both VRNN and SRNN. We note that VRNN with AVF using 2 inference
iterations resulted in a final test performance of 1,071 nats per step, outperforming the baseline
method. Similar results are also observed on each of the polyphonic music data sets. Again, increasing
the number of inference iterations to 5 for AVF on JSB Chorales resulted in a final test performance
of 6.77 nats per step. AVF significantly improves the performance of SVG on KTH Actions. We
attribute this, likely, to the absence of the KL down-weighting factor in our training objective as
compared with [10]. The baseline filtering procedure seems to struggle to a greater degree than AVF.
From comparing the results above, we see that AVF is a general filtering procedure that performs
well across multiple models and data sets, despite using a relatively simple inference model structure.

5 Conclusion

We introduced the variational filtering EM algorithm for filtering in dynamical latent variable models.
Variational filtering inference can be expressed as a sequence of optimization objectives, linked
across steps through previous latent samples. Using iterative inference models to perform inference
optimization, we arrived at an efficient implementation of the algorithm: amortized variational
filtering. This general filtering algorithm scales to large models and data sets. Numerous methods
have been proposed for filtering in deep dynamical latent variable models, with each method hand-
designed for each model. The variational filtering EM algorithm provides a single framework for
analyzing and constructing these methods. Amortized variational filtering is a simple, theoretically-
motivated, and general filtering method that we have shown performs on-par with or better than
multiple existing state-of-the-art methods.
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A Filtering variational free energy

This derivation largely follows that of [16] and is valid for factorized filtering approximate posteriors.
From Eq. 3, we have the definition of variational free-energy:

F ≡ −Eq(z≤T |x≤T )

[
log

pθ(x≤T , z≤T )

q(z≤T |x≤T )

]
. (14)

Plugging in the forms of the joint distribution (Eq. 1) and approximate posterior (Eq. 6), we can
write the term within the expectation as a sum:

F =− Eq(z≤T |x≤T )

[
log

(
T∏
t=1

p(xt, zt|x<t, z<t)
q(zt|x≤t, z<t)

)]
(15)

F =− Eq(z≤T |x≤T )

[
T∑
t=1

log
p(xt, zt|x<t, z<t)
q(zt|x≤t, z<t)

]
(16)

F =− Eq(z≤T |x≤T )

[
T∑
t=1

Ct

]
(17)

where the term Ct is defined to simplify notation. We then expand the expectation:

F = −Eq(z1|x1) . . .Eq(zT |x≤T ,z<T )

[
T∑
t=1

Ct

]
(18)

There are T terms within the sum, but each Ct only depends on the expectations up to time t because
we only condition on past and present variables. This allows us to write:

F =− Eq(z1|x1) [C1]

− Eq(z1|x1)Eq(z2|x≤2,z1) [C2]

− . . .
− Eq(z1|x1)Eq(z2|x≤2,z1) . . .Eq(zT |,x≤T ,z<T ) [CT ] (19)

F =−
T∑
t=1

Eq(z≤t|x≤t) [Ct] (20)

F =−
T∑
t=1

E∏t
τ=1 q(zτ |x≤τ ,z<τ )

[Ct] (21)

F =−
T∑
t=1

E∏t−1
τ=1 q(zτ |x≤τ ,z<τ )

[
Eq(zt|x≤t,z<t) [Ct]

]
(22)

As in Section 3, we define Ft as

Ft ≡ −Eq(zt|x≤t,z<t) [Ct] (23)

Ft = −Eq(zt|x≤t,z<t)

[
log

pθ(xt, zt|x<t, z<t)
q(zt|x≤t, z<t)

]
. (24)

This allows us to write Eq. 22 as

F =

T∑
t=1

E∏t−1
τ=1 q(zτ |x≤τ ,z<τ )

[Ft] , (25)

which agrees with Eq. 7.
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B Implementation details

For all iterative inference models, we followed [33], using two layer fully-connected networks with
1,024 units per layer, “highway” gating connections [43], and ELU non-linearities [8]. Unless
otherwise noted, these models received a concatenation of the current estimate of the approximate
posterior distribution parameters and the corresponding gradients (4 terms in total), normalizing each
term separately using layer normalization [2]. We used the output gating update employed in [33].
We also found that applying layer normalization to the approximate posterior mean estimates resulted
in improved training stability. AVF is comparable in runtime to the baseline filtering methods. For ex-
ample, with our implementation of SRNN on TIMIT, AVF requires 13.1 ms per time step, whereas the
baseline method requires 15.6 ms per time step. AVF requires an additional decoding step, but infer-
ence is local to the current step, meaning that backpropagation is more efficient. Accompanying code
can be found online at github.com/joelouismarino/amortized-variational-filtering.

B.1 Speech modeling

The VRNN architecture is implemented as in [7], matching the number of layers and units in each
component of the model, as well as the non-linearities. We trained on TIMIT with sequences of
length 40, using a batch size of 64. For the baseline method, we used a learning rate of 0.001, as
specified in [7]. For AVF, we used a learning rate of 0.0001. We annealed the learning rates by a
factor of 0.999 after each epoch. Both models were trained for 700 epochs.

We implement SRNN following [13], with the exception of an LSTM in place of the GRU. All other
architecture details, are kept consistent, including the use of clipped (±3) leaky ReLU non-linearities.
The sequence length and batch size are the same as above. We use a learning rate of 0.001 for the
baseline method, following [13]. We use a learning rate of 0.0001. We use the same learning rate
annealing strategy as above. Following [13], we anneal the KL-divergence of the baseline linearly
over the first 20 epochs. We increase this duration to 50 epochs for AVF to account for the lower
learning rate. The iterative inference model additionally encodes the data observation at each step,
which we found necessary to overcome the local minima from the KL-divergence. Models were
trained for 1,000 epochs.

B.2 Music modeling

Our SRNN implementation is the same as in the speech modeling setting, with the appropriate
changes in the number of units and layers to match [13]. We used a sequence length of 25 and a batch
size of 16. All models were trained with a learning rate of 0.0001, with a decay factor of 0.999 per
epoch. We annealed the KL-divergence linearly over the first 50 epochs. Models were trained for 800
epochs.

B.3 Video modeling

The SVG model architecture is implemented identically to [10], with an additional log-variance
term in the observation model’s output to provide a Gaussian output density. Unlike [10], we do not
down-weight the KL-divergence term in the free energy in order to achieve a proper bound. We note
that this is likely the reason that our SVG baseline performs poorly, as the original model was not
intended to be trained with the true variational bound objective. Indeed, we observed that the model
struggles to make use of the latent variables, even when annealing the KL-divergence weight in the
objective. We trained on sequences of length 20 using a batch size of 20. For both methods, we used
a learning rate of 0.0001, with decay of 0.999 after each epoch. Models were trained for 100 epochs.
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