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OVERVIEW

frame model-based RL as probabilistic inference & learning

two additional terms:

prior over actions T T
i > i

_ combine model-based likelihood with a model-free prior

r:m"ormat:on gain from observations | ------- I

L model task-relevant state information, biases planning
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REINFORCEMENT LEARNING AS INFERENCE

reformulate RL as a probabilistic inference problem
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PLANNING AS INFERENCE

can also reformulate planning as inference
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PREVIOUS WORKS

model priors are not learned

focused on fully-observable environments

Levine, 2018

17

@ @ @

—(®

©)
&

@
\ J

L\
Iele)
o

\.

Q_O-®

o

Piché, Thomas, et al., 2019



ENVIRONMENT

pe(Xl:Ta r1.T, Sl:T|a1:T—1) = Hpe(St!St—l, at—1)

state dynamics
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ENVIRONMENT

aPapgs

T
pe(Xl:Ta r1.T, Sl:T|al:T—1) = Hpe(stfst—la at—l)pe(xt|st)pe(rt‘st)

e —

t=1 " — g

state dynamics observations/rewards
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T

pa(aLT\XlzT, 7“1:15)
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pa(ar.r, z1.7|X1:1, T1:T) = Hpa(at|a<t7 Z<t,X<t,T<t)Pa(Zt|act, Zat, X<t, 7<)

tzl\ —m ™

action prior internal state prior
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OPTIMALITY

© © ©

cond. likelihood
of optimality
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ENVIRONMENT-AGENT-OPTIMALITY

p(XLT, r1.7,81:T,a1:T,21:T, Ol:T)

joint distribution
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LEARNING

The agent’s distributions are parameterized by 6.

fl\/laximum Log-Likelihood Objective

0* = arg meaxlEolzTNau) log p(O1.7)]

= argmax logp(O1.7 =1).

where

\_

p(O1.7) = /p(XLT,Tl:T,SlzT,al:T,ZLT,01:T)Xm:Td”'“l:TdSLTdaLTle;T

/
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VARIATIONAL INFERENCE

We cannot evaluate log p(O1.7) due to the intractable marginalization.

Introduce a structured approximate posterior, q:

-
internal state
T _— —_—
q(z1.7,a1.7|x1.7, 1.7, O1.7) = HQ(Zt|Z<taa<taX§t7T§ta O¢t1:7)
t=1
. Q(at\zgt, Act, X<ty <ty Ot—i—l:T)
action
\_

This results in a lower bound on the objective:

L(q) <logp(Or.7)
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GENERATIVE AGENT LOWER BOUND

Convert state estimation into a generative mapping using Bayes’ Rule:

__ Da (Xt,?“t|a<t,z<tax<ta7“<t)pa(Zt\a<taZ<t7X<ta7“<t
pa(Zt|a<taZ<t7X§t,7’§t) =
Pa(Xt, Tt|act, Bty Xty T<t)

Plugging this into the bound yields:

~

T
L = Es.x.r~p. Zr’f + log Pa(Xt, rtact, Z<t, X<t, T'<t) 1o q(zt|Z<t,a<t, x<t,7<t, Ory1.7)
z,anq pa(Xt,Tt!a<t,z<t7X<t7"“<t) pa(Zt\a<t>Z<t,X<t,7"<t)

information gain internal state consistency
reward

-_— T— e T —

t=1

~log Q(at’Zgh Ao, X<t, I'<t, Ot—l—l:T)]

pa(at‘a<t7 Z<t,X<t, rét)

e —

action consistency
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GENERATIVE AGENT LOWER BOUND

Computation Graph:

action

internal
state

obs.,
reward

e log likelihood, log ratio

Env.
O s; dynamics

@ X;,r; emission

Optimality
O O, cond. likelihood

Agent
O z; prior

@ Z; approx. post.

O a; prior

@ a; approx. post.
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GENERATIVE AGENT LOWER BOUND

Computation Graph:

O
action . . .
@ @
internal
state . . )
@) @)
obs.,
reward O, O

e log likelihood, log ratio

Env. Agent

O s; dynamics O z; prior O x¢,r; cond. likelihood

@ xi,7; emission @ Z: approx. post. @ Xx:,r; marginal likelihood
Optimality O ay prior

O O, cond. likelihood @ a; approx. post.
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VARIATIONAL EM

(while 0 not converged: x

X1,71,81 Npe(X1|S1)pe(T1|Sl)pe(S1)

for t=1...T:

# inference (simulated rollouts)

Q(Zt|z<t7 Act, X<t, I'<t, Ot+1:T) < arg m(?x LT

Q(at|2§t7 Aoy, X<t, T'<t¢, Ot+1:T) < arg man LT

ag ~~ C](at\zgt,aqaxgtﬂ'gt, Ot—|—1:T)

X415 Tt41St4+1 ~ De(Xe41/S¢41)Pe(Tt+1[St41)Pe (St+1]S¢, ar)

L 004+ aVeLl J

We typically cannot simulate the environment to evaluate L1
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ACTION INFERENCE VIA PLANNING

Estimate L. using the generative agent’s internal model.

Replace pe and @ in future terms with Py

-

\

reward mutual information

— —

T
< pa(xﬂr'r|a<77Z§77X<7‘7T<7)
£t—|—1:T — Ex,r,z,awpa E rr + 10g
r=t+1 pa(XT,7"7-|a<7-,Z<7-,X<7-,7“<7.)

|

~

J
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PLANNING

Computation Graph:

Q@
action o

internal
state

obs.,
reward

e log likelihood, log ratio

Env.

O s; dynamics

@ X;,r; emission
Optimality

O O, cond. likelihood

Agent
O z; prior

Zi approx. post.

@
O a; prior
@

a; approx. post.
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O Xxi,r: cond. likelihood

@ x:,r; marginal likelihood



PLANNING

. lannin
Computation Graph: P g
action o
® ® 20

internal

state )
obs.,

reward O, Q. Q.®

g_>o. Oe —0-

e log likelihood, log ratio

Env. Agent

O s; dynamics O z; prior O x¢,r; cond. likelihood

@ xi,7; emission @ Z: approx. post. @ Xx:,r; marginal likelihood
Optimality O ay prior

O O, cond. likelihood @ a; approx. post.
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PLANNING

Computation Graph: planning

||!!!!!EEEE::::::::::: .................................
action e N T TR T e
. ........ ... ) ' ..................
internal /7 S )
State \‘ ““‘ *
obs., .y -
reward O, Q.
I——»Oo (e
Action selection depends on:
a MODEL-FREE PRIOR ) (" MODEL-BASED LIKELIHOOD )
pa(at]acs, z<¢, X<, T<t) £t+1:T
— _J — _J
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PLANNING DISTILLATION

“Habits are sometimes said to be controlled by antecedent stimuli,
whereas goal-directed behavior is said to be controlled by its consequences.”

Actions and habits: the development of behavioural autonomy, Dickinson, 1985
Reinforcement learning: An introduction, Sutton & Barto, 2018

Learning pa(ai|a<:, z<i, X<, 7<¢) will shift it toward q(a¢|z<¢, act, X<, r<t, Ory1.7)

Pa

training

\I\/Iodel—based planning will be “distilled” into a model-free policy, forming a habit)
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MODELING THE ENVIRONMENT

GENERATIVE AGENT:
. ~
L = Es.x.rp ZT + log Pa(Xe, Te|lacs, Z<i, X<, T<t) log q(Zt|Z<t,act, X<t,7<t, Ory1:7)
— Es,x,r~pe . _
za~d Pa (X, Te|lact, Zat, Xt Tct) Pa(Zi|act, e, Xcp, Tt)

. 10g Q(atlzgt, a<t, th, ’]”‘St, Ot—l—l:T)
k pa(at‘a<t,Z§t,X§t,fr’§t) )

T

£t+1:T — IEZx,r,z,awpa § (e log ( , ‘ — , )
_ pa(XT7TT‘a<T7Z<T7X<77T<T)
T=t+1

The likelihood ratio

learning: encourages the agent to learn a task-relevant model

inference: biases planning toward less stochastic/uncertain outcomes
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RECAP: BENEFITS

GLANNING DISTILLATION T . T

convert model-based planning into a model-free policy

+ fewer interactions during training

k + after training, fast to act

ﬁ/IODELING THE ENVIRONMENT I ------- > I

estimate information gain / mutual information

4+ learn a more task-oriented internal state

k + improve robustness during planning
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