An Inference Perspective on Model-Based Reinforcement Learning

Joseph Marino, Yisong Yue

Caltech

Iterative Amortized Inference

Marino, et al., 2018a

Iterative Amortized Inference

Marino, et al., 2018a

Amortized Variational Filtering Marino, et al., 2018b

Iterative Amortized InferenceMarino, et al., 2018a

Amortized Variational Filtering Marino, et al., 2018b An Inference Perspective on Model-Based RL
Marino & Yue, 2019

OVERVIEW

frame model-based RL as probabilistic inference & learning

two additional terms:

prior over actions

combine <u>model-based likelihood</u> with a <u>model-free prior</u>

information gain from observations

model task-relevant state information, biases planning

can also reformulate planning as inference

can also reformulate planning as inference

can also reformulate planning as inference

can also reformulate planning as inference

PREVIOUS WORKS

model priors are not learned

focused on fully-observable environments

Levine, 2018

Piché, Thomas, et al., 2019

ENVIRONMENT

$$p_{e}(\mathbf{x}_{1:T}, r_{1:T}, \mathbf{s}_{1:T} | \mathbf{a}_{1:T-1}) = \prod_{t=1}^{T} \underbrace{p_{e}(\mathbf{s}_{t} | \mathbf{s}_{t-1}, \mathbf{a}_{t-1})}_{\text{state dynamics}}$$

ENVIRONMENT

$$p_{e}(\mathbf{x}_{1:T}, r_{1:T}, \mathbf{s}_{1:T} | \mathbf{a}_{1:T-1}) = \prod_{t=1}^{T} \underbrace{p_{e}(\mathbf{s}_{t} | \mathbf{s}_{t-1}, \mathbf{a}_{t-1})}_{\text{state dynamics observations/rewards}} \underbrace{p_{e}(\mathbf{x}_{t} | \mathbf{s}_{t}) p_{e}(\mathbf{x}_{t} | \mathbf{s}_{t})}_{\text{state dynamics observations/rewards}}$$

AGENT

$$p_{\mathbf{a}}(\mathbf{a}_{1:T}|\mathbf{x}_{1:T},r_{1:t})$$

AGENT

$$p_{\mathbf{a}}(\mathbf{a}_{1:T}, \mathbf{z}_{1:T} | \mathbf{x}_{1:T}, r_{1:T}) = \prod_{t=1}^{T} \underbrace{p_{\mathbf{a}}(\mathbf{a}_{t} | \mathbf{a}_{< t}, \mathbf{z}_{\leq t}, \mathbf{x}_{\leq t}, r_{\leq t})}_{\text{action prior}} \underbrace{p_{\mathbf{a}}(\mathbf{z}_{t} | \mathbf{a}_{< t}, \mathbf{z}_{< t}, \mathbf{x}_{\leq t}, r_{\leq t})}_{\text{internal state prior}}$$

OPTIMALITY

$$p(\mathcal{O}_{1:T}|r_{1:T}) = \prod_{t=1}^T \underbrace{p(\mathcal{O}_t|r_t)}_{ ext{cond. likelihood}}$$
 cond. likelihood of optimality

ENVIRONMENT-AGENT-OPTIMALITY

$$p(\mathbf{x}_{1:T}, r_{1:T}, \mathbf{s}_{1:T}, \mathbf{a}_{1:T}, \mathbf{z}_{1:T}, \mathcal{O}_{1:T})$$

joint distribution

LEARNING

The agent's distributions are parameterized by θ .

Maximum Log-Likelihood Objective

$$\theta^* = \arg \max_{\theta} \mathbb{E}_{\mathcal{O}_{1:T} \sim \delta(\mathbf{1})} \left[\log p(\mathcal{O}_{1:T}) \right]$$
$$= \arg \max_{\theta} \log p(\mathcal{O}_{1:T} = \mathbf{1}).$$

where

$$p(\mathcal{O}_{1:T}) = \int p(\mathbf{x}_{1:T}, r_{1:T}, \mathbf{s}_{1:T}, \mathbf{a}_{1:T}, \mathbf{z}_{1:T}, \mathcal{O}_{1:T}) d\mathbf{x}_{1:T} dr_{1:T} d\mathbf{s}_{1:T} d\mathbf{a}_{1:T} d\mathbf{z}_{1:T}$$

VARIATIONAL INFERENCE

We cannot evaluate $\log p(\mathcal{O}_{1:T})$ due to the intractable marginalization.

Introduce a <u>structured</u> approximate posterior, q:

$$q(\mathbf{z}_{1:T}, \mathbf{a}_{1:T} | \mathbf{x}_{1:T}, r_{1:T}, \mathcal{O}_{1:T}) = \prod_{t=1}^{T} \overbrace{q(\mathbf{z}_{t} | \mathbf{z}_{< t}, \mathbf{a}_{< t}, \mathbf{x}_{\leq t}, r_{\leq t}, \mathcal{O}_{t+1:T})}^{\text{internal state}} \cdot \underbrace{q(\mathbf{a}_{t} | \mathbf{z}_{\leq t}, \mathbf{a}_{< t}, \mathbf{x}_{\leq t}, r_{\leq t}, \mathcal{O}_{t+1:T})}_{\text{action}}$$

This results in a lower bound on the objective:

$$\mathcal{L}(q) \leq \log p(\mathcal{O}_{1:T})$$

GENERATIVE AGENT LOWER BOUND

Convert state estimation into a generative mapping using Bayes' Rule:

Plugging this into the bound yields:

generative agent bound

reward information gain internal state consistency
$$\mathcal{L} = \mathbb{E}_{\substack{\mathbf{z}, \mathbf{x}, r \sim p_{\mathrm{e}} \\ \mathbf{z}, \mathbf{a} \sim q}} \left[\sum_{t=1}^{T} r_{t} + \log \frac{p_{\mathbf{a}}(\mathbf{x}_{t}, r_{t} | \mathbf{a}_{< t}, \mathbf{z}_{\leq t}, \mathbf{x}_{< t}, r_{< t})}{p_{\mathbf{a}}(\mathbf{x}_{t}, r_{t} | \mathbf{a}_{< t}, \mathbf{z}_{< t}, \mathbf{x}_{< t}, r_{< t})} - \log \frac{q(\mathbf{z}_{t} | \mathbf{z}_{< t}, \mathbf{a}_{< t}, \mathbf{x}_{\leq t}, \mathbf{x}_{\leq t}, \mathcal{O}_{t+1:T})}{p_{\mathbf{a}}(\mathbf{z}_{t} | \mathbf{a}_{< t}, \mathbf{z}_{< t}, \mathbf{x}_{\leq t}, \mathbf{x}_{< t}, r_{\leq t})} - \log \frac{q(\mathbf{a}_{t} | \mathbf{z}_{\leq t}, \mathbf{a}_{< t}, \mathbf{x}_{\leq t}, \mathbf{x}_{< t}, r_{< t})}{p_{\mathbf{a}}(\mathbf{a}_{t} | \mathbf{a}_{< t}, \mathbf{z}_{\leq t}, \mathbf{x}_{\leq t}, r_{\leq t})} \right]$$
action consistency

GENERATIVE AGENT LOWER BOUND

Computation Graph:

• log likelihood, log ratio

Env.

- o s_t dynamics
- \mathbf{o} \mathbf{x}_t, r_t emission

Optimality

 \mathcal{O}_t cond. likelihood

Agent

- \bigcirc **z**_t prior
- \mathbf{z}_t approx. post.
- \mathbf{O} \mathbf{a}_t prior
- \bullet **a**_t approx. post.

 \mathbf{o} \mathbf{x}_t, r_t cond. likelihood

 \bullet \mathbf{x}_t, r_t marginal likelihood

GENERATIVE AGENT LOWER BOUND

Computation Graph:

• log likelihood, log ratio

Env.

- o s_t dynamics
- \mathbf{o} \mathbf{x}_t, r_t emission

Optimality

 \mathcal{O}_t cond. likelihood

Agent

- \bigcirc **z**_t prior
- \bullet **z**_t approx. post.
- \mathbf{O} \mathbf{a}_t prior
- \bullet **a**_t approx. post.

- \mathbf{o} \mathbf{x}_t, r_t cond. likelihood
- \bullet \mathbf{x}_t, r_t marginal likelihood

VARIATIONAL EM

```
while \theta not converged:
          \mathbf{x}_1, r_1, \mathbf{s}_1 \sim p_{\mathrm{e}}(\mathbf{x}_1|\mathbf{s}_1)p_{\mathrm{e}}(r_1|\mathbf{s}_1)p_{\mathrm{e}}(\mathbf{s}_1)
          for t = 1 ... T:
                  # inference (simulated rollouts)
                  q(\mathbf{z}_t|\mathbf{z}_{< t}, \mathbf{a}_{< t}, \mathbf{x}_{\leq t}, r_{\leq t}, \mathcal{O}_{t+1:T}) \leftarrow \arg\max_{q} \mathcal{L}_{t:T}
                  q(\mathbf{a}_t|\mathbf{z}_{\leq t}, \mathbf{a}_{< t}, \mathbf{x}_{\leq t}, r_{\leq t}, \mathcal{O}_{t+1:T}) \leftarrow \arg\max \mathcal{L}_{t:T}
                  # interaction
                   \mathbf{a}_t \sim q(\mathbf{a}_t | \mathbf{z}_{\leq t}, \mathbf{a}_{\leq t}, \mathbf{x}_{\leq t}, r_{\leq t}, \mathcal{O}_{t+1:T})
                   \mathbf{x}_{t+1}, r_{t+1}, \mathbf{s}_{t+1} \sim p_{e}(\mathbf{x}_{t+1}|\mathbf{s}_{t+1})p_{e}(r_{t+1}|\mathbf{s}_{t+1})p_{e}(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t})
        # learning
       \theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}
```

We typically cannot simulate the environment to evaluate $\mathcal{L}_{t:T}$

ACTION INFERENCE VIA PLANNING

Estimate $\mathcal{L}_{t:T}$ using the generative agent's internal model.

Replace p_{e} and q in future terms with p_{a} :

reward

mutual information

$$\widehat{\mathcal{L}}_{t+1:T} = \mathbb{E}_{\mathbf{x},r,\mathbf{z},\mathbf{a} \sim p_{\mathbf{a}}} \left[\sum_{\tau=t+1}^{T} r_{\tau} + \log \frac{p_{\mathbf{a}}(\mathbf{x}_{\tau}, r_{\tau} | \mathbf{a}_{<\tau}, \mathbf{z}_{\leq \tau}, \mathbf{x}_{<\tau}, r_{<\tau})}{p_{\mathbf{a}}(\mathbf{x}_{\tau}, r_{\tau} | \mathbf{a}_{<\tau}, \mathbf{z}_{<\tau}, \mathbf{x}_{<\tau}, r_{<\tau})} \right]$$

planning bound

PLANNING

Computation Graph:

• log likelihood, log ratio

Env.

- o s_t dynamics
- \mathbf{o} \mathbf{x}_t, r_t emission

Optimality

 \mathcal{O}_t cond. likelihood

Agent

- \bigcirc **z**_t prior
- \mathbf{z}_t approx. post.
- \mathbf{a}_t prior
- \bullet **a**_t approx. post.

 \bigcirc \mathbf{x}_t, r_t cond. likelihood

 \bullet \mathbf{x}_t, r_t marginal likelihood

PLANNING

PLANNING

Computation Graph:

planning

Action selection depends on:

MODEL-FREE PRIOR

$$p_{\mathbf{a}}(\mathbf{a}_t|\mathbf{a}_{< t},\mathbf{z}_{\leq t},\mathbf{x}_{\leq t},r_{\leq t})$$

MODEL-BASED LIKELIHOOD

$$\widehat{\mathcal{L}}_{t+1:T}$$

PLANNING DISTILLATION

"Habits are sometimes said to be controlled by antecedent stimuli, whereas goal-directed behavior is said to be controlled by its consequences."

Actions and habits: the development of behavioural autonomy, Dickinson, 1985 Reinforcement learning: An introduction, Sutton & Barto, 2018

Learning $p_{\mathbf{a}}(\mathbf{a}_t|\mathbf{a}_{< t},\mathbf{z}_{\leq t},\mathbf{x}_{\leq t},r_{\leq t})$ will shift it toward $q(\mathbf{a}_t|\mathbf{z}_{\leq t},\mathbf{a}_{< t},\mathbf{x}_{\leq t},r_{\leq t},\mathcal{O}_{t+1:T})$

Model-based planning will be "distilled" into a model-free policy, forming a habit.

MODELING THE ENVIRONMENT

GENERATIVE AGENT:

$$\mathcal{L} = \mathbb{E}_{\mathbf{s}, \mathbf{x}, r \sim p_{e}} \left[\sum_{t=1}^{T} r_{t} + \log \frac{p_{\mathbf{a}}(\mathbf{x}_{t}, r_{t} | \mathbf{a}_{< t}, \mathbf{z}_{\leq t}, \mathbf{x}_{< t}, r_{< t})}{p_{\mathbf{a}}(\mathbf{x}_{t}, r_{t} | \mathbf{a}_{< t}, \mathbf{z}_{< t}, \mathbf{x}_{< t}, r_{< t})} - \log \frac{q(\mathbf{z}_{t} | \mathbf{z}_{< t}, \mathbf{a}_{< t}, \mathbf{x}_{\leq t}, \mathbf{x}_{\leq t}, \mathcal{O}_{t+1:T})}{p_{\mathbf{a}}(\mathbf{z}_{t} | \mathbf{a}_{< t}, \mathbf{z}_{< t}, \mathbf{x}_{< t}, r_{< t})} - \log \frac{q(\mathbf{a}_{t} | \mathbf{z}_{\leq t}, \mathbf{a}_{< t}, \mathbf{x}_{\leq t}, \mathbf{x}_{< t}, r_{< t})}{p_{\mathbf{a}}(\mathbf{a}_{t} | \mathbf{a}_{< t}, \mathbf{z}_{\leq t}, \mathbf{x}_{\leq t}, r_{\leq t})} \right]$$

$$= \log \frac{q(\mathbf{a}_{t} | \mathbf{z}_{\leq t}, \mathbf{a}_{< t}, \mathbf{x}_{\leq t}, \mathbf{x}_{\leq t}, \mathcal{O}_{t+1:T})}{p_{\mathbf{a}}(\mathbf{a}_{t} | \mathbf{a}_{< t}, \mathbf{z}_{\leq t}, \mathbf{x}_{\leq t}, r_{\leq t})} \right]$$

$$= \log \frac{q(\mathbf{a}_{t} | \mathbf{z}_{\leq t}, \mathbf{a}_{< t}, \mathbf{x}_{\leq t}, \mathbf{z}_{\leq t}, r_{\leq t}, \mathcal{O}_{t+1:T})}{p_{\mathbf{a}}(\mathbf{a}_{t} | \mathbf{a}_{< t}, \mathbf{z}_{\leq t}, \mathbf{x}_{\leq t}, r_{\leq t})}$$

$$= \log \frac{q(\mathbf{a}_{t} | \mathbf{z}_{\leq t}, \mathbf{a}_{< t}, \mathbf{x}_{\leq t}, r_{\leq t}, \mathcal{O}_{t+1:T})}{p_{\mathbf{a}}(\mathbf{a}_{t} | \mathbf{a}_{< t}, \mathbf{z}_{\leq t}, \mathbf{x}_{\leq t}, r_{\leq t})}$$

$$\widehat{\mathcal{L}}_{t+1:T} = \mathbb{E}_{\mathbf{x},r,\mathbf{z},\mathbf{a} \sim p_{\mathbf{a}}} \left[\sum_{\tau=t+1}^{T} r_{\tau} + \log \frac{p_{\mathbf{a}}(\mathbf{x}_{\tau}, r_{\tau} | \mathbf{a}_{<\tau}, \mathbf{z}_{\leq \tau}, \mathbf{x}_{<\tau}, r_{<\tau})}{p_{\mathbf{a}}(\mathbf{x}_{\tau}, r_{\tau} | \mathbf{a}_{<\tau}, \mathbf{z}_{<\tau}, \mathbf{x}_{<\tau}, r_{<\tau})} \right]$$
inference (planning) bound

The likelihood ratio

learning: encourages the agent to learn a task-relevant model

inference: biases planning toward less stochastic/uncertain outcomes

RECAP: BENEFITS

PLANNING DISTILLATION

convert model-based planning into a model-free policy

- + fewer interactions during training
- + after training, fast to act

MODELING THE ENVIRONMENT

estimate information gain / mutual information

- learn a more task-oriented internal state
- + improve robustness during planning

joelouismarino.github.io

jmarino@caltech.edu