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Abstract

Model-based reinforcement learning (RL) of-
fers the prospect of improved sample complexity
through model learning and model-based plan-
ning. However, the agent’s model and policy are
often considered separately, only to be combined
heuristically in the objective function. Starting
from the perspective of RL as probabilistic infer-
ence and learning, we derive the general objective
for a model-based agent in a partially-observable
environment. In comparison with conventional
approaches to model-based RL, this objective in-
cludes additional terms that impact action selec-
tion and model learning. We interpret several
recent approaches in light of this perspective, and
by noting differences, we highlight directions for
further investigation.

1. Introduction

Reinforcement learning (RL) has recently seen substantial
progress, primarily as a result of model-free approaches
(Mnih et al., 2015; Schulman et al., 2015; Lillicrap et al.,
2015; Mnih et al., 2016; Schulman et al., 2017b). How-
ever, model-free RL tends to require many environment
interactions to update action or value estimates, referred
to as high sample complexity. Model-based approaches, in
contrast, can more rapidly incorporate environment infor-
mation through model learning and model-based planning,
thereby improving sample complexity. Yet, model-based
RL can be more difficult to train and typically suffers from
worse asymptotic performance. Part of this difficulty may
arise from considering the agent’s model and policy sep-
arately, heuristically combining these components in the
objective function. A more unified framing may illuminate
the underlying interaction between these components.

We approach model-based RL from the perspective of prob-
abilistic inference and learning (Levine, 2018). By framing
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an agent’s interaction with a partially-observable environ-
ment as a probabilistic graphical model, we arrive at a single
variational objective for model learning, state estimation,
and action selection. This framing generalizes various spe-
cial cases in both model-free and model-based RL. However,
in comparison with conventional model-based approaches,
this objective contains additional terms that impact action
selection and model learning:

e In addition to model-based planning, an agent also
contains a model-free action prior, which can help to
initialize planning and be used as a roll-out policy.

e The objective contains the agent’s marginal log-
likelihood of observations, restricting the agent’s model
to learn task-relevant state information and biasing
planning toward higher-confidence states.

In light of this perspective, we interpret several recent ap-
proaches and highlight directions for further investigation.

2. Related work

Recent improvements in generative models (Kingma &
Welling, 2014; Rezende et al., 2014), particularly sequen-
tial latent variable models (Chung et al., 2015; Fraccaro
et al., 2016; Gemici et al., 2017; Goyal et al., 2017), have
facilitated renewed interest in model-based RL. Models can
assist in learning state representations (Lange & Riedmiller,
2010; Jaderberg et al., 2016; Eslami et al., 2018; Igl et al.,
2018), serve as environment emulators (Sutton, 1990; Ha
& Schmidhuber, 2018; Kurutach et al., 2018; Kaiser et al.,
2019), or enable model-based planning (Deisenroth et al.,
2015; Henaff et al., 2017; Nagabandi et al., 2018; Chua
et al., 2018; Hafner et al., 2019). In a typical set-up, a gener-
ative model is trained to capture the environment dynamics.
The model can then be used in place of the environment for
training or planning actions. However, it is unclear how to
constructively combine these components. For instance, a
policy could impact the model’s internal state representation,
and a model’s uncertainty could impact training or planning.

To approach model-based RL from a more unified formu-
lation, we start from the perspective of RL as probabilistic
inference, recasting actions as latent variables and infer-
ring actions that result in “observed” high reward. This
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is typically accomplished by introducing binary variables
(Cooper, 1988) that map reward to a degree of “optimal-
ity” (Levine, 2018), then setting optimality to be observed
as true. Previous works have investigated this probabilis-
tic inference approach in the context of planning (Attias,
2003; Toussaint & Storkey, 2006; Toussaint, 2009; Hoffman
et al., 2009; Botvinick & Toussaint, 2012; Piché et al., 2019)
and control (Todorov, 2008; Rawlik et al., 2013; Haarnoja
et al., 2017; Schulman et al., 2017a; Haarnoja et al., 2018b;
Levine, 2018; Shvechikov et al., 2018). However, these
approaches are generally considered outside of the context
of model learning or only consider fully-observable environ-
ments. Our formulation, instead, centers on using learned
models for state estimation and action selection in partially-
observable environments.

Model-based RL is not without its limitations: planning
is computationally expensive, and poor model quality can
negatively impact asymptotic task performance. For these
reasons, there has been considerable work in combining
model-based and model-free RL (Heess et al., 2015; Gu
et al., 2016; Chebotar et al., 2017; Bansal et al., 2017; We-
beretal., 2017; Oh et al., 2017; Nagabandi et al., 2018; Pong
et al., 2018; Co-Reyes et al., 2018). While many approaches
exist, one line of work involves consolidating model-based
planning into a model-free policy, e.g. (Buesing et al., 2018).
As we describe in Sections 3 and 4, our formulation natu-
rally frames this process as Bayesian estimation, converting
model-based likelihoods into model-free priors. Likewise,
our formulation points out inconsistencies between conven-
tional model-based and model-free objectives.

3. Variational reinforcement learning
3.1. Set-up: agent, environment, and optimality

Consider an agent performing a sequence of actions within
a partially-observable environment. At time step ¢, the envi-
ronment is in state s;, but the agent is only able to observe
sensory observations, x;, and reward, ;. The agent per-
forms action a;, at which point the environment transitions
to state s;41. Because the environment state is unobserved,
we are free to assume it is Markov, potentially redefining
it to capture the entire history. The distribution over the
environment variables, denoted pe, can thus be expressed as

T
Pe(XlzT, r1.T, 51:T|al:T—1) = Hpe(st|st—1a at—l)
t=1

(D
'pe(Xt|St)pe(7‘t|St)~

Typically, we do not have analytical expressions for these
distributions. Instead, we must resort to sampling x and r
from the environment through interactions. We do, however,
have access to the agent, which is subject to our design
choices. The agent contains a distribution over actions,

Figure 1. Graphical Model of the Agent, Environment, and
Optimality. The graphical model depicts a simplified version
of the joint distribution over all variables, which is comprised
of the environment (Eq. 1), agent (Eq. 2), and optimality (Eq.
3) distributions. By constructing a graphical model of the agent-
environment system, conditioning on optimality (maximal reward),
and marginalizing over all other variables, RL is recast as a proba-
bilistic inference and learning problem.

which, in accordance with the forward nature of the en-
vironment, may be conditioned on any past and present
variables. The agent may also contain additional latent
variables, which we denote by z, allowing the agent to in-
ternally represent state information. A general form for the
distribution over the agent’s variables, denoted p,, is

T
pa(al:T7 Zl:T|X1:Ta 7’1:T) = Hpa(at|a<ta Z<t, X<ty 7’9)
t=1

'pa(Zt\a<t, Z<t7x§t77"§t)-

2

Note that marginalizing this distribution over z.r yields
a distribution over a;.r. Although not explicitly written,
the agent’s distributions are parameterized by 6. Together,
the conditional distributions for the agent (Eq. 2) and envi-
ronment (Eq. 1) define the joint distribution of trajectories.
However, to train the agent to perform tasks, we must formu-
late reward maximization in probabilistic terms, specifying
preferences over states and actions. Following previous
works, we introduce binary variables (Cooper, 1988), map-
ping reward to “optimality” (Levine, 2018). Denoting opti-
mality as O, the conditional likelihood of optimality at time
t is a Bernoulli distribution, 3, with

p(O¢lre) = Blexp(re)) 3)

for r; < 0. Conditioning on O; = 1, the conditional log-
likelihood becomes log p(O; = 1|r;) = r;. Thus, max-
imizing the log-likelihood of optimality is equivalent to
maximizing reward. Combining the agent, environment,
and optimality distributions yields the joint distribution
p(x1.7, 1.7, S1.7, &1.1, Z1.7, O1.7). Figure 1 illustrates a
graphical model for a simplified form of this distribution.
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In contrast to the standard RL set-up, in which an agent
is trained and evaluated according to the expected sum
of rewards, i.e. return, the objective is the marginal log-
likelihood of optimality,

0" = arggnaxEOl:TM;(l) [log p(O1.7)]

4)
= argmax log p(O1.7 = 1).
0

Thus, considering the distribution of all possible trajectories,
the agent is trained such that maximal return is maximally
likely. Through learning, we adjust the parameters, ¢, un-
derlying the agent’s internal state and action distributions in
an attempt to fit this desired outcome.

3.2. Variational inference and learning

Evaluating and optimizing log p(O1.7 = 1) directly is in-
tractable, as it involves marginalizing over all variables in
the agent and environment distributions. Instead, we lower
bound the objective using techniques from variational in-
ference (Jordan et al., 1998). As in (Levine, 2018), we
introduce a structured approximate posterior distribution, ¢,
over the variables for which sampling is under our control,
i.e. z and a. This approximate posterior is expressed in the
following form:

q(z1:T7alzT|X1:T7 r1.7,% Ol:T)

Il
=

q(z¢|z<r,acy, X<y, 7<t, Ory1:1) )
t

1

: Q(at\zgt, Act, X<ty <t Ot-‘rl:T)-

Note that each distribution is conditioned on past and cur-
rent variables, as well as future optimality observations. In
Appendix A, we use this approximate posterior to derive a
lower bound on the objective, £ < log p(O1.7 = 1), where
L is defined as:

d (z¢|Z<t,act, x<t, 7<t, O )
L—F Zrt ~log Q\Zt|Z<t, A<, X<t, T<t, Vt4+1:T
—1 pa(zt|a<t7z<t7X§ta Tgt)

q(at|z<t, ace, X<, r<t, Opg1.7)

pa(at\aq» Z<t,X<t, Tgt)

— log

(6)

The expectation involves sampling s, x, and r from the
environment and sampling z and a from the agent. This
is similar to the “max-entropy” bound derived in (Levine,
2018), but it includes the prior distribution on actions,
pa(ai]acy, z<¢, X<y, 7<), and additional corresponding
terms for z. From the perspective of the agent-environment
distribution, p,(z¢|a<t, Z<:, X<¢, <) is the prior distribu-
tion on z,. This distribution can be parameterized as a direct,
discriminative mapping, which we refer to as a discrimina-
tive agent. Alternatively, we can use Bayes’ rule to invert

Pa(Z¢|acs, Z<y, X<y, T<¢) into a generative mapping:

pa(Zt\a<t, Z<ty X<ty Tgt)

_ pa(xt; Tt\a<t,Z§t7X<t7T<t)pa(zt|a<taz<tax<ta 7’<t)

Pa (X, Tt|a<t7 Zot, X<ty T<t)

)

This inversion results in terms modeling the likelihood of
observations and rewards, providing an additional learning
signal, a more complex internal state posterior, and an inter-
nal model that allows for model-based planning. We refer
to an agent of this form as a generative agent. Substituting
Eq. 7 into Eq. 6 and rearranging yields

T
[ —F Zrt+logPa(Xt7Tt|a<t7Z§t,X<t,T<t)

=1 pa(xt7rt|a<tvz<tax<taT<t)

~log q(Z¢|z<t, a<t, X<t "<t Ort1:7) (8)
pa(zt|a<t7 Z<t, X<ty 7"<t)
q(at|z<¢, act, x<t, <t Ogg1.1)

— log
pa(at |a<t7 Z<t, X<t Tgt)

The additional term in Eq. 8 corresponds to the agent’s
information gain in x; and r; after estimating z; from q.
Maximizing this term encourages observations and rewards
to be maximally informative to the agent’s model, attempt-
ing to increase the information contained in z. Simplified
computation graphs for the discriminative and generative
agents are shown in Figure 2.

We can optimize the bound using the variational EM algo-
rithm (Dempster et al., 1977; Neal & Hinton, 1998), which
alternates between optimizing the approximate posterior,
q, during inference (E-step), and the parameters, ¢, dur-
ing learning (M-step). Both optimization procedures can
be performed using Monte Carlo estimates of the bound
(Ranganath et al., 2014; Hoffman et al., 2013). To simplify
notation, let £; denote the terms in the bound at time ¢:

T
logp(O17) 2 L=E | L. ©)
t=1

For each sampled Monte Carlo trajectory, we optimize the
bound sequentially w.r.t. the structured approximate poste-
rior. Each step involves optimizing the approximate poste-
rior distributions over z; and a;, which appear directly in £;
and indirectly in the expectations around £ 1.7. In general,
these optimization procedures involve unrolling the environ-
ment to evaluate these future terms. After optimizing the
bound w.r.t. g for a trajectory or a mini-batch of trajectories,
we can then optimize the bound w.r.t. the agent’s parameters,
6. The efficiency of the inference procedures may be im-
proved through amortization (Marino et al., 2018b;a). The
overall procedure, which we refer to as Active Variational
Expectation Maximization, is provided in Algorithm 1 in
Appendix C.
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Figure 2. Computation Graphs. Shaded regions represent the
environment, agent, and optimality. Circles with black outlines
represent probability distributions. Arrows represent dependencies
between time steps (dotted) and within (solid). Red dots represent
terms in the objectives. Computation graphs are simplified, with a
subset of dependencies. Inference computations are not shown.

3.3. Model-based planning and consolidation

We are often unable to roll out the environment during
inference. For a generative agent, we can instead use the
agent’s distribution, p,, to estimate and maximize future
terms in the bound, thereby planning. At time t, we can
replace pe and ¢ in £, 1.7 with p, over the corresponding
variables. The estimated lower bound over EAHLT is then:

Et+1:T =

T
pa(x‘m TT|a<T7 Z<r, X<y T<T)
E,, r, + log
pa(XT7 TT|a<T? Zor, X1y T<T)

(10)

T=t+1

During inference, we can maximize E[L; + Et+1:T] w.rt. g
at each time step, allowing the agent to internally evaluate
the outcomes of its actions and internal state estimates under
its own model. As with conventional approaches to plan-
ning, this estimated objective contains the predicted reward.
However, the estimated objective also includes the mutual
information between the internal state and the observations
and reward. This term should bias planning toward states
with lower epistemic uncertainty. An unrolled planning
computation graph is shown in Figure 3 in Appendix C.

Through learning, the log ratio terms on z and a in the ob-
jective (Eq. 6 and 8) will bring the priors on these variables
toward their approximate posteriors. Thus, model-based
approximate posteriors will be consolidated into model-free
priors. This provides a mechanism for converting goal-
directed behavior into habits (Dickinson, 1985). After suffi-
cient training of the priors, the agent can operate in a more
efficient model-free manner. We also note that during plan-
ning (Eq. 10), actions are sampled according to the agent’s
prior, serving as a roll-out policy, cf. (Silver et al., 2016).

4. Discussion

We now contrast the inference perspective presented here
with recent approaches to model-based RL. Multiple works
have combined sequential latent variable models, using vari-
ational inference, with RL, e.g. (Buesing et al., 2018; Igl
et al., 2018; Ha & Schmidhuber, 2018; Hafner et al., 2019;
Zhang et al., 2019). In comparison with the objective in Eq.
8, these formulations do not contain the negative marginal
log-likelihood of observations and reward, effectively max-
imizing reward and learning an environment model. This
highlights an inconsistency between current model-based
and model-free objectives. While reward maximization and
model learning are often complementary, they may be at
odds in complex environments. Including this term forces
the agent’s model to retain only task-relevant information.
This presents a future research direction, investigating the
task-specificity of learned models and their effect on asymp-
totic task performance. Optimizing this term may pose
challenges, requiring approximations (Burda et al., 2016)
and annealing schemes (Bowman et al., 2016).

Unlike previous formulations, the planning objective in Eq.
10 contains the mutual information between the internal
state and the observations and reward, effectively down-
weighting uncertain outcomes. This presents another re-
search direction, investigating the effect of this term on the
quality and stability of planning optimization.

Our formulation relies on latent variables, z, enabling the
agent to maintain a stochastic internal state. While previous
works have looked at adding latent variables to the policy
(Gupta et al., 2018; Hausman et al., 2018; Haarnoja et al.,
2018a), these approaches were considered in the context of
meta-RL or hierarchical RL.

While a uniform action prior (Levine, 2018), as used in max-
entropy RL, can have a stabilizing effect, a learned prior may
provide further improvement (Shvechikov et al., 2018). We
have described how this prior provides a principled Bayesian
mechanism for consolidating model-based planning into a
model-free policy (Weber et al., 2017; Nagabandi et al.,
2018; Kurutach et al., 2018; Buesing et al., 2018). This
presents yet another direction for further investigation.
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A. Lower bound derivation
We start by writing the joint distribution over all variables from the agent and environment distributions:
T
p(xlzTa r1.T,81:T7,a1:T7,Z1.T), Ol:T) = Hpa(at |a<ta Z<t,X<t, rgt)pa<zt |a<t7 Z<t, X<t Tft) (1 1)
t=1
“Pe(st|st—1,at—1)pe(Xt[8t)pe (71 [8¢)p(Of|1e).

We will bound the log marginal likelihood of optimality being 1, using an approximate posterior, ¢, over variables for which
we can control sampling, i.e. actions and model latent variables:

q(z1.7,avr|x1r, rir, Onr) = H q(z¢|z<t,ace, X<t,T<t, Opy1:7)
=1

(12)

: q(at |z§t7 Act, X<t, I'<t, Ot+1:T)~
We first write the marginal likelihood as the marginalization of the joint distribution (Eq. 11):
p(Orr) = /p(XLT, 1.7, S1.7, 1.7, Z1.7, Or7)dX1.7drirdsy rday.rdz o

= /p(X1:T7 Ti.T,81:T,41:T, Z1:T, OI:T)

) q(Z1:T731:T|X1:T,7’1:T,Ol:T)

dxy.pdri.rdsi.rday.rdz.r
Q(leTa a1:T|X1:T7 ri.T, Ol:T)

T

= / [ pa(aclacs, z<i, x<t, r<i)pa(zilace, z<i, x<i, r<i)pe(silsi—1, ar—1)
t=1

4(ze|z<i, a<e, X<t, 7<t, Opy1r)
4(2z¢|z<t, a<e, x<t, 7<t, Opy1:1)
) q(at|Z§t,a<t,X§t,7“§t, Ot+1:T)

q(ag|z<i, act, X<, 7<t, Opp1.1)

T
= Epe(s1.x1,m) Eq(z1 1) Eq(ar ) Epe(salarsi) - - - al(Otln) i
t=1

“ Pe(Xt[8t)pe(Tt]8t)p(Otlrt)

dxl:Tdrlszsl:Tdal:szl:T

pa(Zt |a<t7 Z<ty X<t Tgt)

Z¢|Z<y, Acy, X<ty <ty Opy1:1)

) pa(at|a<t7Z§taX§taT§t)
Q(at|Z§t7 Act, X<t, <t Opy1:r)

To obtain the log marginal likelihood, we take the log of both sides. Bringing the log inside of the expectations forms a
lower bound, £, using Jensen’s inequality:

T
b 70 :
log p(O17) > £ = Esox,rpe Zlogp(0t|7”t) ~log q(Z¢|z<t, a<t, X<t, "<ty Ort1:7)
z,arq pa(Zt|a<t, Z<t, X<t Tgt)

=t (13)
~log q(ar]z<i, act, X<t, 7<t Ort1:7)
pa(at \a<t, Z<t, X<t Tgt)

Evaluating the log marginal likelihood at O; = 1 for all time steps yields:

log p(O1.7 = 1) > Esx,r~pe

z,a~q

T
q(Zt|Z<t,act, x<t,7<t, Ory1.7)
Z ry — log
=1 Pa(Zt|a<taZ<t,X§t7T§t)

(14)
— log

q(at|z<i, acs, xX<t,r<t, Ory1.7)
pa(at \a<t» Z<t,X<t, 7“5:&)
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We can parameterize p,(z:|a<¢, Z<¢, X<, 7'9) as a direct, discriminative mapping. Alternatively, we can parameterize the
inverse, generative mapping, using Bayes’ rule to express

Pa(Xm Tt|a<t7 Z<t, X<ty r<t)pa(zt|a<t7 Z<t, X<ty 7“<t) (15)

pa(zt|a<tvz<t7x§t77"§t) =
pa(Xm Tt|a<t7 Z<t, X<ty 7’<t)

Plugging this expression into the bound yields

T
Pa(Xe, Telacs, Z<t, X, T<t) ~log q(Zt|Z<t,a<t, X<t 7<t, Ops1:7)

L = Es,x,r~p. Z T + 10g
mavd i Pa(Xt, Te|acs, Zat, X<t T<t) Pa(Zt|ace, Z<t, X<ty 7<) (16)

o IOg q(at|z§ta Act, X<t, I'<t, Ot+l:T)
pa(at\a<t, Z<t, X<t Tgt)

B. Active variational EM algorithm

Algorithm 1: Active Variational Expectation Maximization (EM)

Input: Agent-Environment Distribution p(x1.7, 1.7, 1.7, a1.7, Z1.7, O1.T)
while 6 not converged do

X1,7T1,81 Npe(Xl\Sl)pe(T1|S1)pe(Sl)

fort=1...7T do

# E-step

# internal state inference

q(2Zt|z<t,a<s, X<t,7<t, Ory1.7) < argmax, By o [Lor]

Zi ~ Q(Zt|Z<t7a<t,X§t, r<t, Ot+1:T)

# action inference

q(a|z<t,act, X<, <, Opr1:7)  argmax, Ky [Lr.7]

a; ~ qag|z<s, act, X<ty 7<t, Opr1:7)

# environment interaction

X415 Tt41,St41 ~ Pe(Xet1]St41)Pe (T4 1(St41)Pe(St418¢, ar)
end

# learning (M-step)

0+ 0+ aVyLl

end
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C. Planning

o) oy —so:

»

Planning

e log ratio, log likelihood
t—1-=»t t—>1
Env.

O s dynamics

© X¢,r: emission

Agent

O z: prior

@ z: approx. post.

O a; prior

@ a; approx. post.

O x¢,r cond. likelihood
@ x,7: marginal likelihood
Optimality

O O cond. likelihood

Figure 3. Unrolled action planning computation graph. During planning, we replace the future environment, p., and approximate
posterior distributions, ¢, with the agent’s distributions, p,. Rolling out the agent’s model provides an estimate of future terms in the

objective, which can be used to infer the action approximate posterior.



